Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 163–173

Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

  • Weon Gyu Shin
  • Jing Wang
  • Michael Mertler
  • Bernd Sachweh
  • Heinz Fissan
  • David Y. H. Pui
Nanoparticles and Occupational Health


In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (dpa) and the mobility diameter (dm), i.e., dpa = 0.92 ± 0.03 dm for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) Df = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for dm = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (DfL) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621–633; and (3) mass fractal-like dimension (Dfm) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260–271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621–633 is larger than that from using the relationship, dpa = 0.92 ± 0.03 dm or from using the mobility analysis.


Nanoparticle agglomerates Silver Particle mobility Structural property TEM Nanotechnology Occupational health EHS 


  1. Brasil AM, Farias TL, Carvalho MG (1999) A recipe for image characterization of fractal-like aggregates. J Aerosol Sci 30:1379–1389. doi:10.1016/S0021-8502(99)00026-9 CrossRefGoogle Scholar
  2. Cai J, Lu N, Sorensen CM (1993) Comparison of size and morphology of soot aggregates as determined by scattering and electron microscope analysis. Langmuir 9:2861–2867. doi:10.1021/la00035a023 CrossRefGoogle Scholar
  3. Chan P, Dahneke B (1981) Free molecule drag on straight chains of uniform spheres. J Appl Phys 52:3106–3110. doi:10.1063/1.329173 CrossRefADSGoogle Scholar
  4. Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30:438–453. doi:10.1080/027868299304480 CrossRefGoogle Scholar
  5. Friedlander SK, Pui DYH (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res 6:313–320. doi:10.1023/B:NANO.0000034725.89027.6b CrossRefGoogle Scholar
  6. Froeschke S, Kohler S, Weber AP, Kasper G (2003) Impact fragmentation of nanoparticle agglomerates. J Aerosol Sci 34:275–287. doi:10.1016/S0021-8502(02)00185-4 CrossRefGoogle Scholar
  7. Gwaze P, Schmid O, Annegarn HJ, Andreae MO, Huth J, Helas G (2006) Comparison of three methods of fractal analysis applied to soot aggregates from wood combustion. J Aerosol Sci 37:820–838. doi:10.1016/j.jaerosci.2005.06.007 CrossRefGoogle Scholar
  8. Hering SV, Flagan RC, Friedlander SK (1978) Design and evaluation of a new low pressure impactor. 1. Environ Sci Technol 12:667–673. doi:10.1021/es60142a004 CrossRefGoogle Scholar
  9. Hinds WC (1999) Aerosol technology. Wiley, New YorkGoogle Scholar
  10. Katrinak KA, Rez P, Perkes PR, Buseck PR (1993) Fractal geometry of carbonaceous aggregates from an urban aerosol. Environ Sci Technol 27:539–547. doi:10.1021/es00040a013 CrossRefGoogle Scholar
  11. Koylu UO, Faeth GM, Farias TL, Carvalho MG (1995) Fractal and projected structure properties of soot aggregates. Combust Flame 100:621–633. doi:10.1016/0010-2180(94)00147-K CrossRefGoogle Scholar
  12. Ku BK, Maynard AD (2006) Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aerosol Sci 37(4):452–470. doi:10.1016/j.jaerosci.2005.05.003 CrossRefGoogle Scholar
  13. Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J Aerosol Sci 37:260–271. doi:10.1016/j.jaerosci.2005.05.021 CrossRefGoogle Scholar
  14. Lall AA, Seipenbusch M, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: II. Comparison of measurements and theory. J Aerosol Sci 37:272–282. doi:10.1016/j.jaerosci.2006.01.006 CrossRefGoogle Scholar
  15. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San FranciscoMATHGoogle Scholar
  16. Meakin P, Donn B, Mulholland GW (1989) Collisions between point masses and fractal aggregates. Langmuir 5:510–518. doi:10.1021/la00086a038 CrossRefGoogle Scholar
  17. Megaridis CM, Dobbins RA (1990) Morphological description of flame-generated materials. Combust Sci Technol 71:95–109. doi:10.1080/00102209008951626 CrossRefGoogle Scholar
  18. Neimark AV, Koylu OU, Rosner DE (1996) Extended characterization of combustion-generated aggregates: Self-affinity and lacunarities. J Colloid Interface Sci 180:590–597. doi:10.1006/jcis.1996.0340 CrossRefGoogle Scholar
  19. Oh C, Sorensen CM (1997) The effect of overlap between monomers on the determination of fractal cluster morphology. J Colloid Interface Sci 193:17–25. doi:10.1006/jcis.1997.5046 PubMedCrossRefGoogle Scholar
  20. Oh H, Park H, Kim S (2004) Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Sci Technol 38:1045–1053Google Scholar
  21. Park K, Kittelson DB, McMurry PH (2004) Structural properties of diesel exhaust particles measured by transmission electron microscope (TEM): relationships to particle mass and mobility. Aerosol Sci Technol 38:881–889. doi:10.1080/027868290505189 CrossRefGoogle Scholar
  22. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219. doi:10.1016/S0360-1285(97)00028-2 CrossRefGoogle Scholar
  23. Rogak SN, Flagan RC, Nguyen HV (1993) The mobility and structure of aerosol agglomerates. Aerosol Sci Technol 18:25–47. doi:10.1080/02786829308959582 CrossRefGoogle Scholar
  24. Samson RJ, Mulholland GW, Gentry JW (1987) Structural analysis of soot agglomerates. Langmuir 3:272–281. doi:10.1021/la00074a022 CrossRefGoogle Scholar
  25. Scheibel HG, Porstendorfer J (1983) Generation of monodisperse Ag-aerosol and Nacl- aerosol with particle diameters between 2-nm and 300-nm. J Aerosol Sci 14(2):113–126. doi:10.1016/0021-8502(83)90035-6 CrossRefGoogle Scholar
  26. Schmidt-Ott A (1988) New approaches to in situ characterization of ultrafine agglomerates. J Aerosol Sci 19:553–563. doi:10.1016/0021-8502(88)90207-8 CrossRefGoogle Scholar
  27. Tence M, Chevalier JP, Jullien R (1986) On the measurement of the fractal dimension of aggregated particles by electron microscopy : Experimental method, corrections and comparison with numerical models. J Phys 47:1989–1998Google Scholar
  28. Weber AP, Baltensperger U, Gaggeler HW, Schmidt-Ott A (1996) In situ characterization and structure modification of agglomerated aerosol particles. J Aerosol Sci 27:915–929. doi:10.1016/0021-8502(96)00013-4 CrossRefGoogle Scholar
  29. Weber AP, Friedlander SK (1997) In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J Aerosol Sci 28:179–192. doi:10.1016/S0021-8502(96)00062-6 CrossRefGoogle Scholar
  30. Wentzel M, Gorzawski H, Naumann KH, Saathoff H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci 34:1347–1370. doi:10.1016/S0021-8502(03)00360-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Weon Gyu Shin
    • 1
  • Jing Wang
    • 1
  • Michael Mertler
    • 2
  • Bernd Sachweh
    • 2
  • Heinz Fissan
    • 3
  • David Y. H. Pui
    • 1
  1. 1.Department of Mechanical EngineeringThe University of MinnesotaMinneapolisUSA
  2. 2.BASF SEFine Particle Technology and Particle CharacterizationLudwigshafenGermany
  3. 3.Institute of Energy and Environmental Technology e. V. (IUTA)DuisburgGermany

Personalised recommendations