Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 121–131

Dustiness test of nanopowders using a standard rotating drum with a modified sampling train

  • Chuen-Jinn Tsai
  • Chien-Hsien Wu
  • Ming-Long Leu
  • Sheng-Chieh Chen
  • Cheng-Yu Huang
  • Perng-Jy Tsai
  • Fu-Hsiang Ko
Nanoparticles and Occupational Health

Abstract

The standard rotating drum tester was used to determine the dustiness of two nanopowders, nano-TiO2 and fine ZnO, in standard 1-min tests. Then, the sampling train was modified to determine the number and mass distributions of the generated particles in the respirable size range using a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a Multi-orifice Uniform Deposit Impactor (MOUDI) in the 30-min tests. It was found that very few particles below 100 nm were generated and the released rate of particles decreased with increasing rotation time for both nanopowders in the 30-min tests. Due to the fluffy structure of the released TiO2 agglomerated particles, the mass distributions measured by the MOUDI showed large differences with those determined by the APS assuming the apparent bulk densities of the powders. The differences were small for the ZnO agglomerates, which were more compact than the TiO2 agglomerates.

Keywords

Nanoparticle Dustiness Aerosol sampling Aerosol instrument Nanotechnology Occupational health EHS 

References

  1. Baron P (1986) Calibration and use of the aerodynamic particle sizer (APS 3300). Aerosol Sci Technol 5:55–67. doi:10.1080/02786828608959076 CrossRefGoogle Scholar
  2. CEN (European Committee for Standardization) (2006) Workplace atmospheres—Measurement of the dustiness of bulk material—Requirements and reference test methods. EN 15051:2006 (E) April 2006Google Scholar
  3. Hamelmann F, Schmidt E (2003) Method of estimating the dustiness of indurstrial powders—A review. KONA—Powder Science & Technology in Japan No.21Google Scholar
  4. Isamu O, Sakurai H, Gamo M (2007) Dustiness testing of engineered nano-materials. In: Abstract, 3rd international symposium on nanotechnology, occupation and environmental health, Taipei, Taiwan, 29 Aug–1 Sep 2007Google Scholar
  5. Kinney PD, Pui DYH (1995) Inlet efficiency study for the TSI aerodynamic particle sizer. Part Part Syst Charact 12:188–193. doi:10.1002/ppsc.19950120405 CrossRefGoogle Scholar
  6. Ku BK, Maynard AD, Baron PA, Deye GJ (2007) Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. J Electrost 65:542–548. doi:10.1016/j.elstat.2006.10.012 CrossRefGoogle Scholar
  7. Lidén G (2006) Dustiness testing of materials handled at workplaces. Ann Occup Hyg 50(5):437–439. doi:10.1093/annhyg/mel042 PubMedCrossRefGoogle Scholar
  8. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A 67:87–107. doi:10.1080/15287390490253688 PubMedCrossRefGoogle Scholar
  9. Mark D (2005) The use of reliable measurements of dustiness of chemicals in selecting the most appropriate dust control technology. IOHA 2005 Pilanesberg:S2-3Google Scholar
  10. Mark D, Bard D, Thorpe A, Wake D (2007) Some considerations for the measurement of the dustiness of nanopowders. In: 3rd international symposium on nanotechnology, occupational and environmental health, Taipei, Taiwan, 29 Aug–1 Sep 2007Google Scholar
  11. NIOSH (2005) NIOSH current intelligence bulletin: evaluation of health hazard and recommendations for occupational exposure to titanium dioxide (draft)Google Scholar
  12. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  13. Petavratzi E, Kingman SW, Lowndes IS (2007) Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations. Chem Eng Process 46:1412–1423. doi:10.1016/j.cep. 2006.11.005 Google Scholar
  14. Peters TM, Leith D (2003) Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. J Aerosol Sci 34:627–634. doi:10.1016/S0021-8502(03)00030-2 CrossRefGoogle Scholar
  15. Schneider T, Jensen KA (2008) Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann Occup Hyg 52(1):23–34. doi:10.1093/annhyg/mem059 PubMedCrossRefGoogle Scholar
  16. Tsai CJ, Chein HM, Chang ST, Yoh KuoJong (1998) Performance evaluation of an API Aerosizer. J Aerosol Sci 29:839–853. doi:10.1016/S0021-8502(97)00433-3 CrossRefGoogle Scholar
  17. Tsai CJ, Yang WS, Szymanski WW, Chein HM (1999) Particle transmission efficiency through the nozzle of the API aerosizer. J Aerosol Sci 30:1019–1028. doi:10.1016/S0021-8502(98)00789-7 CrossRefGoogle Scholar
  18. Tsai CJ, Chen SC, Huang CH, Chen DR (2004) A universal calibration curve for the TSI aerodynamic particle sizer. Aerosol Sci Technol 38:467–474. doi:10.1080/02786820490460725 CrossRefGoogle Scholar
  19. Volckens J, Peters TM (2005) Counting and particle transmission efficiency of the aerodynamic particle sizer. J Aerosol Sci 36:1400–1408. doi:10.1016/j.jaerosci.2005.03.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chuen-Jinn Tsai
    • 1
  • Chien-Hsien Wu
    • 1
  • Ming-Long Leu
    • 1
  • Sheng-Chieh Chen
    • 1
  • Cheng-Yu Huang
    • 1
  • Perng-Jy Tsai
    • 2
  • Fu-Hsiang Ko
    • 3
  1. 1.Institute of Environmental EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC
  2. 2.Department of Environmental and Occupational HealthNational Cheng Kung UniversityTainanTaiwan, ROC
  3. 3.Institute of NanotechnologyNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations