Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 77–89 | Cite as

Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

  • Jingkun Jiang
  • Günter Oberdörster
  • Pratim Biswas
Nanoparticles And Occupational Health


Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.


Nanoparticle Toxicology Nanotoxicology Health Safety Ultrasonication Nanotechnology Environment 



This work was partially supported by a grant from the U.S. Department of Defense (AFOSR) MURI Grant, FA9550-04-1-0430. Support from the Center of Materials Innovation, Washington University in St. Louis, is also acknowledged.


  1. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al (2006) The potential risks of nanomaterial: a review carried out for ECETOC. Part Fibre Toxicol 3:11–46. doi: 10.1186/1743-8977-3-11 PubMedCrossRefGoogle Scholar
  2. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi: 10.1007/s11051-005-4884-8 CrossRefGoogle Scholar
  3. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307. doi: 10.1021/la050588t PubMedCrossRefGoogle Scholar
  4. Buford M, Hamilton R, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6. doi: 10.1186/1743-8977-4-6 PubMedCrossRefGoogle Scholar
  5. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170. doi: 10.1038/nbt1340 PubMedCrossRefGoogle Scholar
  6. Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475. doi: 10.1021/jp971091y CrossRefGoogle Scholar
  7. Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:733–762Google Scholar
  8. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM et al (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315. doi: 10.1093/toxsci/kfm217 PubMedCrossRefGoogle Scholar
  9. Hogan CJ, Kettleson EM, Ramaswami B, Chen DR, Biswas P (2006) Charge reduced electrospray size spectrometry of mega- and gigadalton complexes: whole viruses and virus fragments. Anal Chem 78:844–852. doi: 10.1021/ac051571i PubMedCrossRefGoogle Scholar
  10. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi: 10.1021/nl048715d CrossRefADSGoogle Scholar
  11. Hunter RJ (1981) Zeta potential in colloid science. Academic press Inc., LondonGoogle Scholar
  12. ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquidsGoogle Scholar
  13. Jiang J, Chen DR, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor (FLAR) with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603. doi: 10.1088/0957-4484/18/28/285603 CrossRefGoogle Scholar
  14. Jiang J, Oberdorster G, Elder E, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42. doi: 10.1080/17435390701882478 CrossRefGoogle Scholar
  15. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97. doi: 10.1038/nbt920 PubMedCrossRefGoogle Scholar
  16. Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface 99:255–264. doi: 10.1016/S0001-8686(02)00080-5 CrossRefGoogle Scholar
  17. Kulkarni P, Sureshkumar R, Biswas P (2003) Multiscale simulation of irreversible deposition in presence of double layer interactions. J Colloid Interface Sci 260:36–48. doi: 10.1016/S0021-9797(02)00236-9 PubMedCrossRefGoogle Scholar
  18. Lenggoro IW, Widiyandari H, Hogan CJ, Biswas P, Okuyama K (2007) Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Anal Chim Acta 585:193–201. doi: 10.1016/j.aca.2006.12.030 PubMedCrossRefGoogle Scholar
  19. Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641. doi: 10.1080/10611860400015936 PubMedCrossRefGoogle Scholar
  20. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352. doi: 10.1021/es060589n PubMedCrossRefGoogle Scholar
  21. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125. doi: 10.1021/nl060162e PubMedCrossRefADSGoogle Scholar
  22. Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126. doi: 10.1016/j.powtec.2005.08.020 CrossRefGoogle Scholar
  23. Morrison ID, Ross S (2002) Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience, New YorkGoogle Scholar
  24. Muller F, Peukert W, Polke R, Stenger F (2004) Dispersing nanoparticles in liquids. Int J Miner Process 74:S31–S41. doi: 10.1016/j.minpro.2004.07.023 CrossRefGoogle Scholar
  25. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi: 10.1093/toxsci/kfm240 PubMedCrossRefGoogle Scholar
  26. Oberdorster E (2004) Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062PubMedGoogle Scholar
  27. Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle-size, in-vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179. doi: 10.2307/3432080 PubMedCrossRefGoogle Scholar
  28. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi: 10.1186/1743-8977-2-8 PubMedCrossRefGoogle Scholar
  29. Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  30. Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25. doi: 10.1080/17435390701314761 CrossRefGoogle Scholar
  31. Ott LS, Finke RG (2007) Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord Chem Rev 251:1075–1100. doi: 10.1016/j.ccr.2006.08.016 CrossRefGoogle Scholar
  32. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303. doi: 10.1093/toxsci/kfj099 PubMedCrossRefGoogle Scholar
  33. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51. doi: 10.1080/17435390701314902 CrossRefGoogle Scholar
  34. Renwick LC, Donaldson K, Clouter A (2001) Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 172:119–127. doi: 10.1006/taap.2001.9128 PubMedCrossRefGoogle Scholar
  35. Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129. doi: 10.1080/17435390701381596 CrossRefGoogle Scholar
  36. Saltiel C, Chen Q, Manickavasagam S, Schadler LS, Siegel RW, Menguc MP (2004) Identification of the dispersion behavior of surface treated nanoscale powders. J Nanopart Res 6:35–46. doi: 10.1023/B:NANO.0000023206.45991.dc CrossRefGoogle Scholar
  37. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708. doi: 10.1152/ajplung.00084.2005 PubMedCrossRefGoogle Scholar
  38. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley-Interscience, New YorkGoogle Scholar
  39. Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinis SE (2008) Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol 181:292–300. doi: 10.1016/j.powtec.2007.05.016 CrossRefGoogle Scholar
  40. The Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertaintiesGoogle Scholar
  41. Tsantilis S, Pratsinis SE (2004) Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20:5933–5939. doi: 10.1021/la036389w PubMedCrossRefGoogle Scholar
  42. U.S. EPA (2004) Air quality criteria for particulate matterGoogle Scholar
  43. Vasylkiv O, Sakka Y (2001) Synthesis and colloidal processing of zirconia nanopowder. J Am Ceram Soc 84:2489–2494CrossRefGoogle Scholar
  44. Verwey EJW, Overbeek JTg (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  45. von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D’Ippoliti D et al (2005) Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 112:3073–3079. doi: 10.1161/CIRCULATIONAHA.105.548743 CrossRefGoogle Scholar
  46. Wallace WE, Keane MJ, Murray DK, Chisholm WP, Maynard AD, Ong TM (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 9:23–38. doi: 10.1007/s11051-006-9159-5 CrossRefGoogle Scholar
  47. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125. doi: 10.1093/toxsci/kfg228 PubMedCrossRefGoogle Scholar
  48. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104. doi: 10.1016/j.tox.2006.11.002 PubMedCrossRefGoogle Scholar
  49. Wengeler R, Teleki A, Vetter M, Pratsinis SE, Nirschl H (2006) High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22:4928–4935. doi: 10.1021/la053283n PubMedCrossRefGoogle Scholar
  50. Widegren J, Bergstrom L (2002) Electrostatic stabilization of ultrafine titania in ethanol. J Am Ceram Soc 85:523–528Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jingkun Jiang
    • 1
  • Günter Oberdörster
    • 2
  • Pratim Biswas
    • 1
  1. 1.Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Environmental MedicineUniversity of RochesterRochesterUSA

Personalised recommendations