Journal of Nanoparticle Research

, Volume 10, Supplement 1, pp 89–96 | Cite as

A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions

  • Christopher M. Hoo
  • Natasha Starostin
  • Paul West
  • Martha L. Mecartney
Research Paper


This paper compares the accuracy of conventional dynamic light scattering (DLS) and atomic force microscopy (AFM) for characterizing size distributions of polystyrene nanoparticles in the size range of 20–100 nm. Average DLS values for monosize dispersed particles are slightly higher than the nominal values whereas AFM values were slightly lower than nominal values. Bimodal distributions were easily identified with AFM, but DLS results were skewed toward larger particles. AFM characterization of nanoparticles using automated analysis software provides an accurate and rapid analysis for nanoparticle characterization and has advantages over DLS for non-monodispersed solutions.


Atomic force microscopy Dynamic light scattering Polystyrene nanoparticles Size analysis Nanotechnology Instrumentation 



The authors would like to thank Dr. Hirotaka Sasaki and Dr. Stephen White of the University of California, Irvine School of Medicine for access to their dynamic light scattering analyzer. This work was supported by the U.S. Navy under contract # N00244-06-P-2341 and funding from Pacific Nanotechnology, Inc.


  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–934CrossRefGoogle Scholar
  2. Bryant G, Thomas J (1995) Improved particle size distribution measurements using multiangle dynamic light scattering. Langmuir 11:2480–2482CrossRefGoogle Scholar
  3. Cadene A, Durand-Vidal S, Turq P, Brendle J (2005) Study of individual Na-montmorillonite particles size, morphology, and apparent charge. J Colloid Interface Sci 285:719–730CrossRefGoogle Scholar
  4. Cao A (2003) Light scattering. Recent applications. Anal Lett 36:3185–3225CrossRefGoogle Scholar
  5. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2001) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317CrossRefGoogle Scholar
  6. Elizalde O, Leal GP, Leiza JR (2000) Particle size distribution measurements of polymeric dispersions: a comparative study. Part Part Syst Charact 17:236–243CrossRefGoogle Scholar
  7. Finsy R, De Jaeger N, Sneyers R, Gelade E (1992) Particle sizing by photon correlation spectroscopy. Part III: mono and bimodal distributions and data analysis. Part Part Syst Charact 9:125–137CrossRefGoogle Scholar
  8. Flamberg A, Pecora R (1984) Dynamic light scattering study of micelles in a high ionic strength solution. J Phys Chem 88:3026–3033CrossRefGoogle Scholar
  9. Juillerat F, Solak HH, Bowen P, Hofmann H (2005) Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 16:1311–1316CrossRefGoogle Scholar
  10. Leung AB, Suh KI, Ansari RR (2006) Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl Opt 45:2186–2190CrossRefGoogle Scholar
  11. Li Y, Lindsay SM (1991) Polystyrene latex particles as a size calibration for the atomic force microscope. Rev Sci Instrum 62:2630–2633CrossRefGoogle Scholar
  12. Liu FK, Chang YC, Ko FH, Chu TC, Dai BT (2003) Rapid fabrication of high quality self–assembled nanometer gold nanoparticles by spin coating method. Microelectron Eng 67–68:702–709CrossRefGoogle Scholar
  13. Meulenkamp EA (1998) Size dependence of the dissolution of ZnO nanoparticles. J Phys Chem B 102:7764–7769CrossRefGoogle Scholar
  14. Provder T (1997) Challenges in particle size distribution measurement past, present and for the 21st century. Prog Org Coat 32:143–153CrossRefGoogle Scholar
  15. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction and tip estimation. J Res Natl Inst Stand Technol 102:425–454Google Scholar
  16. Xia D, Biswas A, Li D, Bruek S (2004) Directed self-assembly of silica nanoparticles into nanometer-scale patterned surfaces using spin coating. Adv Mater 16:1427–1432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher M. Hoo
    • 1
  • Natasha Starostin
    • 2
    • 3
  • Paul West
    • 2
  • Martha L. Mecartney
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California, IrvineIrvineUSA
  2. 2.Technology Center, Pacific Nanotechnology, Inc.IrvineUSA
  3. 3.Rosemount Analytical Inc.IrvineUSA

Personalised recommendations