Advertisement

Journal of Nanoparticle Research

, Volume 10, Issue 8, pp 1343–1348 | Cite as

Synthesis and antibacterial activity of silver nanoparticles with different sizes

  • G. A. Martínez-Castañón
  • N. Niño-Martínez
  • F. Martínez-Gutierrez
  • J. R. Martínez-Mendoza
  • Facundo Ruiz
Brief Communication

Abstract

Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet–visible (UV–Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes.

Keywords

Antibacterial-activity Ag-nanoparticles Synthesis Nanobiotechnology EHS 

Abbreviations

TEM

Transmission electron microscopy

DLS

Dynamic light scattering

XRD

X-ray diffraction

UV–Vis

Ultraviolet–visible

MIC

Minimum inhibitory concentration

Notes

Acknowledgements

This work was partially supported by Fondo de Apoyo a la Investigación (FAI) of Universidad Autónoma de San Luis Potosí (UASLP) and CONACYT-61257. N. Niño-Martínez would like to thank CONACYT for the scholarship No. 185006.

References

  1. Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223CrossRefGoogle Scholar
  2. Jana NR, Sau TK, Pal T (1999) Growing small silver particle as redox catalyst. J Phys Chem B 103:115–121CrossRefGoogle Scholar
  3. Jeong SH, Hwnag YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40:5413–5418CrossRefGoogle Scholar
  4. Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101Google Scholar
  5. Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659CrossRefGoogle Scholar
  6. Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917CrossRefGoogle Scholar
  7. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823CrossRefGoogle Scholar
  8. Lok CM, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRefGoogle Scholar
  9. Lutterotti L, Matthies S, Wenk HR (1999) In: Proceedings of the twelfth international conference on textures of materials (ICOTOM-12), vol. 1. Montreal, Canada, p 1599Google Scholar
  10. MacKeen PC, Person S, Warner SC, Snipes W, Stevens SE Jr (1987) Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother 31:93–99Google Scholar
  11. Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681CrossRefGoogle Scholar
  12. Marini M, De Niederhausern N, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8:1246–1254CrossRefGoogle Scholar
  13. Martínez-Castañón GA, Martínez JR, Ortega-Zarzosa G, Facundo R, Sánchez-Loredo MG (2005) Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. J Sol-Gel Sci Technol 36:137–145CrossRefGoogle Scholar
  14. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  15. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  16. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Tat’jana N, Zbořil Z (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16243CrossRefGoogle Scholar
  17. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103CrossRefGoogle Scholar
  18. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Plasmon resonances in large noble-metal clusters. New J Phys 4:931–938CrossRefGoogle Scholar
  19. Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, Shah SI (2007) Antibacterial properties of silver-doped titania. Small 3:799–803CrossRefGoogle Scholar
  20. Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S (2007) One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp 301:73–79CrossRefGoogle Scholar
  21. Zhang L, Yu JC, Yip HY, Li Q, Kwong KW, Xu A, Wong PK (2003) Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19:10372–10380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. A. Martínez-Castañón
    • 1
  • N. Niño-Martínez
    • 2
    • 3
  • F. Martínez-Gutierrez
    • 4
  • J. R. Martínez-Mendoza
    • 3
  • Facundo Ruiz
    • 3
  1. 1.Maestria en Ciencias Odontológicas, Facultad de EstomatologíaUASLPSan Luis PotosiMexico
  2. 2.Instituto de MetalurgiaUASLPSan Luis PotosiMexico
  3. 3.Facultad de CienciasUASLPSan Luis PotosiMexico
  4. 4.Facultad de Ciencias QuímicasUASLPSan Luis PotosiMexico

Personalised recommendations