Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 25–39 | Cite as

Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells

  • Weisheng Lin
  • Yi Xu
  • Chuan-Chin Huang
  • Yinfa Ma
  • Katie B. Shannon
  • Da-Ren Chen
  • Yue-Wern Huang
Nanoparticles and Occupational Health

Abstract

This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose–response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.

Keywords

ZnO Particles Oxidative stress Lipid peroxidation Oxidative DNA damage Human bronchoalveolar carcinoma-derived cell (A549) Nanotechnology Occupational health EHS 

References

  1. Ai H, Bu Y, Han K (2003) Glycine-Zn+/Zn2+ and their hydrates: on the number of water molecules necessary to stabilize the zwitterionic glycine-Zn+/Zn2+ over the nonzwitterionic ones. J Chem Phys 118(24):10973–10985CrossRefADSGoogle Scholar
  2. Anish T, Michael EM, Craig JH, Brooke VH (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior. Macromolecules 38(19):8000–8011CrossRefGoogle Scholar
  3. Bae SY, Seo HW (2004) Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J Phys Chem B 108(17):5206–5210CrossRefGoogle Scholar
  4. Bai XD, Gao PX, Wang ZL, Wang EG (2003) Dual-mode mechanical resonance of individual ZnO nanobelts. Appl Phys Lett 82(26):4806–4808CrossRefADSGoogle Scholar
  5. Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW, Utell MJ, Huang LS, Cox C, Zareba W, Oberdörster G (2005) Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 171(10):1129–1135PubMedCrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199PubMedCrossRefGoogle Scholar
  8. Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871CrossRefADSGoogle Scholar
  9. Conner MW, Flood WH, Rogers AE, Amdur MO (1988) Lung injury in guinea pigs caused by multiple exposures to ultrafine zinc oxide: changes in pulmonary lavage fluid. J Toxicol Environ Health 25(1):57–69PubMedCrossRefGoogle Scholar
  10. Cosma G, Fulton H, DeFeo T, Gordon T (1992) Rat lung metallothionein and heme oxygenase gene expression following ozone and zinc oxide exposure. Toxicol Appl Pharmacol 117(1):75–80PubMedCrossRefGoogle Scholar
  11. Cotgreave IA (1997) N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 38:205–227PubMedCrossRefGoogle Scholar
  12. Ding Y, Wang ZL (2004) Structure analysis of nanowires and nanobelts by transmission electron microscopy. J Phys Chem B 108(33):12280–12291CrossRefGoogle Scholar
  13. Domenech X, Ayllon JA, Peral J (2001) H2O2 formation from photocatalytic processes at the ZnO/water interface. Environ Sci Pollut Res Int 8(4):285–287PubMedCrossRefGoogle Scholar
  14. Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhal Toxicol 14(1):5–27PubMedCrossRefGoogle Scholar
  15. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5PubMedCrossRefGoogle Scholar
  16. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418(1–2):87–90PubMedCrossRefGoogle Scholar
  17. Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS (1997) Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J Occup Environ Med 39(8):722–726PubMedCrossRefGoogle Scholar
  18. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73PubMedCrossRefGoogle Scholar
  19. Hirano S, Higo S, Tsukamoto N, Kobayashi E, Suzuki KT (1989) Pulmonary clearance and toxicity of zinc oxide instilled into the rat lung. Arch Toxicol 63(4):336–342PubMedCrossRefGoogle Scholar
  20. Huang M, Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21(2):344–353PubMedCrossRefGoogle Scholar
  21. Huang GG, Wang CT, Tang HT, Huang YS, Yang J (2006) ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds. Anal Chem 78(7):2397–2404PubMedCrossRefGoogle Scholar
  22. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41:2699–2711Google Scholar
  23. Kipen HM, Laskin DL (2005) Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 289:L696–L697PubMedCrossRefGoogle Scholar
  24. Lam HF, Conner MW, Rogers AE, Fitzgerald S, Amdur MO (1985) Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultrafine zinc oxide. Toxicol Appl Pharmacol 78(1):29–38PubMedCrossRefGoogle Scholar
  25. Lam HF, Chen LC, Ainsworth D, Peoples S, Amdur MO (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49(7):333–341PubMedGoogle Scholar
  26. Lin W, Huang YW, Zhou XD, Ma Y (2006a) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259PubMedCrossRefGoogle Scholar
  27. Lin W, Huang YW, Zhou XD, Ma Y (2006b) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25(6):451–457PubMedCrossRefGoogle Scholar
  28. Lindahl M, Leanderson P, Tagesson C (1998) Novel aspect on metal fume fever: zinc stimulates oxygen radical formation in human neutrophils. Hum Exp Toxicol 17(2):105–110PubMedCrossRefGoogle Scholar
  29. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5767):622–627PubMedCrossRefADSGoogle Scholar
  30. Oberdorster G (2000) Toxicology of ultrafine particles: in vivo studies. Trans R Soc Lond A 358(1175):2719–2740CrossRefADSGoogle Scholar
  31. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedCrossRefGoogle Scholar
  32. Ramakrishna G, Ghosh HN (2003) Effect of particle size on the reactivity of quantum size ZnO nanoparticles and charge-transfer dynamics with adsorbed catechols. Langmuir 19(7):3006–3012CrossRefGoogle Scholar
  33. Russell J, Ness J, Chopra M, McMurray J, Smith WE (1994) The assessment of the HO scavenging action of therapeutic agents. J Pharm Biomed Anal 12(7):863–866PubMedCrossRefGoogle Scholar
  34. Shi X, Dong Z, Huang C, Ma W, Liu K, Ye J, Chen F, Leonard SS, Ding M, Castranova V, Vallyathan V (1999) The role of hydroxyl radical as a messenger in the activation of nuclear transcription factor NF-kappaB. Mol Cell Biochem 194(1–2):63–70PubMedCrossRefGoogle Scholar
  35. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112PubMedCrossRefGoogle Scholar
  36. Straube EF, Schuster NH, Sinclair AJ (1980) Zinc toxicity in the ferret. J Comp Pathol 90(3):355–361PubMedCrossRefGoogle Scholar
  37. Upadhyay D, Panduri V, Ghio A, Kamp D (2003) Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria. Am J Respir Cell Mol Biol 29(2):180–187PubMedCrossRefGoogle Scholar
  38. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616PubMedCrossRefGoogle Scholar
  39. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236PubMedCrossRefGoogle Scholar
  40. Wesselkamper SC, Chen LC, Gordon T (2001) Development of pulmonary tolerance in mice exposed to zinc oxide fumes. Toxicol Sci 60(1):144–151PubMedCrossRefGoogle Scholar
  41. Wesselkamper SC, Chen LC, Gordon T (2005) Quantitative trait analysis of the development of pulmonary tolerance to inhaled zinc oxide in mice. Respir Res 6:73PubMedCrossRefGoogle Scholar
  42. Winters RA, Zukowski J, Ercal N, Matthews RH, Spitz DR (1995) Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization by n-(1-pyrenyl)maleimide. Anal Biochem 227(1):14–21PubMedCrossRefGoogle Scholar
  43. Wottrich R, Diabate S, Krug HF (2004) Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Health 207(4):353–361PubMedCrossRefGoogle Scholar
  44. Yamamoto Y, Imai N, Mashima R, Konaka R, Inoue M, Dunlap WC (2000) Singlet oxygen from irradiated titanium dioxide and zinc oxide. Methods Enzymol 319:29–37PubMedCrossRefGoogle Scholar
  45. Zhang Z, Shen HM, Zhang QF, Ong CN (1999) Critical role of GSH in silica-induced oxidative stress, cytotoxicity, and genotoxicity in alveolar macrophages. Am J Physiol 277(4 Pt 1):L743–L748PubMedGoogle Scholar
  46. Zhu BL, Xie CS, Zeng DW, Song WL, Wang AH (2005) Investigation of gas sensitivity of Sb-doped ZnO nanoparticles. Materials Chem Phys 89(1):148–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Weisheng Lin
    • 1
  • Yi Xu
    • 2
  • Chuan-Chin Huang
    • 2
  • Yinfa Ma
    • 1
  • Katie B. Shannon
    • 2
  • Da-Ren Chen
    • 3
  • Yue-Wern Huang
    • 2
  1. 1.Department of Chemistry and Environmental Research CenterMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of Biological Sciences and Environmental Research CenterMissouri University of Science and TechnologyRollaUSA
  3. 3.Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations