Advertisement

Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 15–24 | Cite as

Toxicity of amorphous silica nanoparticles in mouse keratinocytes

  • Kyung O. Yu
  • Christin M. Grabinski
  • Amanda M. Schrand
  • Richard C. Murdock
  • Wei Wang
  • Baohua Gu
  • John J. Schlager
  • Saber M. Hussain
Nanoparticles and Occupational Health

Abstract

The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.

Keywords

Oxidative stress Mouse keratinocytes Size-dependent toxicity of nanoparticles Nanotechnology Occupational health EHS 

Notes

Acknowledgments

The authors like to thank Col J. Riddle for his strong support and encouragement for this research. Our thanks also go to Paul Bloomer and Richard Freeman for their computer support. This work was supported by the Air Force Office of Scientific Research (AFOSR) Project (BIN# 2312A214).

References

  1. Brown SC, Kamal M, Nasreen N, Baumuratov A, Sharma P, Anthony V, Moudgil BM (2007) Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Technol 18:69–79CrossRefGoogle Scholar
  2. Csogör ZS, Nacken M, Sameti M, Lehr C-M, Schmidt H (2003) Modified silica particles for gene delivery. Mater Sci Eng C 23:93–97CrossRefGoogle Scholar
  3. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728PubMedCrossRefGoogle Scholar
  4. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172PubMedCrossRefGoogle Scholar
  5. Hoet PHM, Brueske-Hohlfeld I, Salata O (2004) Nanoparticles—known and unknown health risks. J Nanotoxicol 2:1–2Google Scholar
  6. Jillavenkatesa A, Kelly JF (2002) Nanopowder characterization: challenges and future directions. J Nanopart Res 4:463–468CrossRefGoogle Scholar
  7. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256PubMedCrossRefGoogle Scholar
  8. Lam C-W, James JT, McClustkey R, Hunter R (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134PubMedCrossRefGoogle Scholar
  9. Lin W, Huang Y-W, Zhou X-D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259PubMedCrossRefGoogle Scholar
  10. McCabe MJ Jr (2003) Mechanisms and consequences of silica-induced apoptosis. Toxicol Sci 76:1–2PubMedCrossRefGoogle Scholar
  11. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JL, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure via dynamic light scattering. Toxicol Sci 101:239–253 PubMedCrossRefGoogle Scholar
  12. Nel A, Xia T, Maedler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–626PubMedCrossRefADSGoogle Scholar
  13. Oberdoerster G, Oberdoerster E, Oberdoerster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  14. Powers KW, Brown SC, Krishna VB, Wasdo SC, Modgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303PubMedCrossRefGoogle Scholar
  15. Roy I, Ohulchanskyy T, Bharali D, Pudavar H, Mistretta R, Kaur N, Prasad P (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. PNAS 102:279–284PubMedCrossRefADSGoogle Scholar
  16. Ryman-Rrasnyssen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165CrossRefGoogle Scholar
  17. Service R (2005) Calls rise for more research on toxicology of nanomaterials. Science 310:1609PubMedCrossRefGoogle Scholar
  18. Thibodeau M, Giardina C, Knecht DA, Helble J, Hubbare AK (2004) Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 80:34–48PubMedCrossRefGoogle Scholar
  19. Vinardell MP (2005) In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cell. Toxicol Sci 88:285–286CrossRefGoogle Scholar
  20. Vertegel AA, Aiegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzyme activity of adsorbed lysozyme. Langmuir 20:6800–6807PubMedCrossRefGoogle Scholar
  21. Wang H, Joseph JA (1999) Quantitating cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616PubMedCrossRefGoogle Scholar
  22. Wang W, Gu B, Liang L, Hamilton W (2003a) Fabrication of two- and three-dimensional silica nanocolloidal particle arrays. J Phys Chem B 107:3400–3404CrossRefGoogle Scholar
  23. Wang W, Gu B, Liang L, Hamilton W (2003b) Fabrication of near infrared photonic crystals using highly-monodispersed submicrometer SiO2 spheres. J Phys Chem B 107:12113–12117CrossRefGoogle Scholar
  24. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Weff TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125PubMedCrossRefGoogle Scholar
  25. Zhou Y, Yokel R (2005) The chemical species of aluminum influence its paracellular flux and uptake into Caco-2 cells, a model of gastrointestinal absorption. Toxicol Sci 87:15–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kyung O. Yu
    • 1
  • Christin M. Grabinski
    • 1
  • Amanda M. Schrand
    • 1
  • Richard C. Murdock
    • 1
  • Wei Wang
    • 2
  • Baohua Gu
    • 2
  • John J. Schlager
    • 1
  • Saber M. Hussain
    • 1
  1. 1.Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research LaboratoryWright-Patterson AFBDaytonUSA
  2. 2.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations