New nanocomposites containing metal nanoparticles, carbon nanotube and polymer

  • Reza Sepahvand
  • Mohsen Adeli
  • Bandar Astinchap
  • Roya Kabiri
Research Paper


Metal-carbon nanotube-graft-polymer (MCNT-g-P) nanocomposites were synthesized and characterized successfully. In this work, multiwall carbon nanotubes (MWCNT) were opened using HNO3/H2SO4 mixture and filled by metal nanoparticles such as silver nanoparticles through wet chemistry method. Then MWCNT containing metal nanoparticles were used as macroinitiator for ring opening polymerization of ε-caprolactone and MCNT-g-P nanocomposites were obtained. Length of grafted polymer arms onto the MWCNT was controlled using MWCNT/ε-caprolactone ratio. Structure and properties of nanocomposites were evaluated by TEM, DSC, TGA, and spectroscopy methods.


Nanocomposites Carbon nanotube Poly(caprolactone) Silver nanoparticles Nanomaterials MWCNT 


  1. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800CrossRefGoogle Scholar
  2. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Top Appl Phys 80:391–425CrossRefGoogle Scholar
  3. Baibarac M, Baltog I, Lefrant S, Mevellec JY, Chauvet O (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 15:4149–4156CrossRefGoogle Scholar
  4. Baibarac M, Baltog I, Godon C, Lefrant S, Chauvet O (2004) Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42:3143–3152CrossRefGoogle Scholar
  5. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542CrossRefGoogle Scholar
  6. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes––the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  7. Blake R, Gun’ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ, Generic A (2004) Organometallic approach toward ultra-strong carbon nanotube polymer composites. J Am Chem Soc 126:10226–10227CrossRefGoogle Scholar
  8. Cahill LS, Yao Z, Adronov A, Penner J, Moonoosawmy KR, Kruse P, Goward GR (2004) Polymer-functionalized carbon nanotubes investigated by solid-state nuclear magnetic resonance and scanning tunneling microscopy. J Phys Chem B 108:11412–11418CrossRefGoogle Scholar
  9. Cao L, Chen H-Z, Li H-Y, Zhou H-B, Sun J-Z, Zhang X-B, Wang M (2003) Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method. Chem Mater 15:3247–3249CrossRefGoogle Scholar
  10. Chen Q, Xu R, Yu D (2006) Multiwalled carbon nanotube/polybenzoxazine nanocomposites: preparation, characterization and properties. Polymer 47:7711–7719CrossRefGoogle Scholar
  11. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, Schreiber J, Chauvet O (2001) Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chem Commun 1450–1451Google Scholar
  12. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798CrossRefGoogle Scholar
  13. Cullity BD, Stock SR (2001) Elements of x-ray diffraction. New JerseyGoogle Scholar
  14. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–380CrossRefGoogle Scholar
  15. Do Nascimento GM, Corio P, Novickis RW, Temperini MLA, Dresselhaus MS (2005) Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites. J Polym Sci Part A 43:815–822CrossRefGoogle Scholar
  16. Dresselhaus M, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, properties and applications. Springer-Verlag, BerlinGoogle Scholar
  17. Dyke CA, Tour JM (2003a) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218CrossRefGoogle Scholar
  18. Dyke CA, Tour JM (2003b) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156–1157CrossRefGoogle Scholar
  19. Gao C, Jin YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY, Qian H, Hartschuh A, Silva SRP, Henley S, Fearon P, Kroto HW, Walton DRM (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932CrossRefGoogle Scholar
  20. Gao C, Li W, Jin YZ, Kong H (2006) Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology 17:2882–2890CrossRefGoogle Scholar
  21. Guldi DM, Rahman GNA, Ramey J, Marcaccio M, Paolucci D, Paolucci F, Qin S, Ford WT, Balbinot D, Jux N, Tagmatarchis N, Prato M (2004) Donor–acceptor nanoensembles of soluble carbon nanotubes. Chem Commun 2034–2035Google Scholar
  22. Guldi DM, Rahman GMA, Prato M, Jux N, Qin S, Ford W (2005) Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew Chem Int Ed 44:2015–2018CrossRefGoogle Scholar
  23. Hadjiev VG, Mitchell CA, Arepalli S, Bahr JL, Tour JM, Krishnamoorti R (2005) Thermal mismatch strains in sidewall functionalized carbon nanotube/polystyrene nanocomposites. J Chem Phys 122:124708–124714CrossRefGoogle Scholar
  24. Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC (2003) Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc 125:14893–14900CrossRefGoogle Scholar
  25. Hudson JL, Casavant MJ, Tour JM (2004) Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J Am Chem Soc 126:11158–11159CrossRefGoogle Scholar
  26. Hwang GL, Shieh Y-T, Hwang KC (2004) Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Adv Funct Mater 14:487–491CrossRefGoogle Scholar
  27. Jia ZJ, Wang ZY, Xu C, Liang J, Wei BQ, Wu DH, Zhu SW (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A271:395–400Google Scholar
  28. Kamaras K, Itkis ME, Hu H, Zhao B, Haddon RC (2003) Covalent bond formation to a carbon nanotube metal. Science 301:1501–1503CrossRefGoogle Scholar
  29. Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H (2004) Fluorination of open- and closed-end single-walled carbon nanotubes. Chem Phys 6:1769–1772CrossRefGoogle Scholar
  30. Kim BM, Qian S, Bau HH (2005) Filling carbon nanotubes with particles. Nano Lett 5:873–878CrossRefGoogle Scholar
  31. Kong H, Gao C, Yan D (2004a) Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 37:4022–4030CrossRefGoogle Scholar
  32. Kong H, Gao C, Yan D (2004b) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413CrossRefGoogle Scholar
  33. Kong H, Li W, Gao C, Yan D, Jin Y, Walton DRM, Kroto HW (2004c) Poly(N-isopropylacrylamide)-coated carbon nanotubes: temperature-sensitive molecular nanohybrids in water. Macromolecules 37:6683–6686CrossRefGoogle Scholar
  34. Kong H, Gao C, Yan D (2004d) Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J Mater Chem 14:1401–1405CrossRefGoogle Scholar
  35. Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472–2485CrossRefGoogle Scholar
  36. Koshio A, Yudasaka M, Zhang M, Iijima S (2001) A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett 1:361–363.CrossRefGoogle Scholar
  37. Kudin KN, Bettinger HF, Scuseria GE (2001) Fluorinated single-wall carbon nanotubes. Phys Rev B 63:045413–045421CrossRefGoogle Scholar
  38. Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784CrossRefGoogle Scholar
  39. Liu I-C, Huang H-M, Chang C-Y, Tsai H-C, Hsu C-H, Tsiang RC-C (2004a) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287CrossRefGoogle Scholar
  40. Liu Y, Tang J, Xin JH (2004b) Fabrication of nanowires with polymer shells using treated carbon nanotube bundles as macro-initiators. Chem Commun 2828–2829Google Scholar
  41. Liu Y, Yao Z, Adronov A (2005) Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 38:1172–1179CrossRefGoogle Scholar
  42. Lu X, Chen Z (2005) Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (C60) and single-walled carbon nanotubes. Chem Rev 105:3643–3696CrossRefGoogle Scholar
  43. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT Jr, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384CrossRefGoogle Scholar
  44. Murugesan S, Park T-J, Yang H, Mousa S, Linhardt RJ (2006) Blood compatible carbon nanotubes––nano-based neoproteoglycans. Langmuir 22:3461–3463CrossRefGoogle Scholar
  45. Nian J-N, Teng H (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110:4193–4198CrossRefGoogle Scholar
  46. Niu C, Sichel EK, Hoch R, Moy D, Tennet H (1997) High power electerochemical capacitors based on carbon nanotube. Appl Phys Lett 7:1480–1483CrossRefGoogle Scholar
  47. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24:1070–1073CrossRefGoogle Scholar
  48. Petrov P, Lou X, Pagnoulle C, Jerome C, Calberg C, Jerome R (2004) Functionalization of multi-walled carbon nanotubes by electrografting of polyacrylonitrile. Macromol Rapid Commun 25:987–990CrossRefGoogle Scholar
  49. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004a) Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37:752–757CrossRefGoogle Scholar
  50. Qin S, Qin D, Ford WT, Herrera JT, Resasco DE, Bachilo SM, Weisman RB (2004b) Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. Macromolecules 37:3965–3967CrossRefGoogle Scholar
  51. Qin S, Qin D, Ford WT, Herrera JT, Resasco DE (2004c) Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films. Macromolecules 37:9963–9967CrossRefGoogle Scholar
  52. Qin S, Qin D, Ford WT, Zhang Y, Kotov NA (2005) Covalent cross-linked polymer/single-wall carbon nanotube multilayer films. Chem Mater 17:2131–2135CrossRefGoogle Scholar
  53. Robertson N, McGowan CA (2003) A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev 32:96–103CrossRefGoogle Scholar
  54. Sainz R, Benito AM, Martinez MT, Galindo JF, Sotres J, Baro AM, Corraze B, Chauvet O, Maser WK (2005) Soluble self-aligned carbon nanotube/polyaniline composites. Adv Mater 17:278–281CrossRefGoogle Scholar
  55. Shaffer MSP, Koziol K (2002) Polystyrene grafted multi-walled carbon nanotubes. Chem Commun 2074–2075Google Scholar
  56. Strano MS (2003) Probing chiral selective reactions using a revised Kataura Plot for the interpretation of single-walled carbon nanotube spectroscopy. J Am Chem Soc 125:16148–16153CrossRefGoogle Scholar
  57. Sung JH, Kim HS, Jin H-J, Choi HJ, Chin I-J (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37:9899–9902CrossRefGoogle Scholar
  58. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52CrossRefGoogle Scholar
  59. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  60. Tong X, Liu C, Cheng H-M, Zhao H, Yang F, Zhang X (2004) Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. J Appl Polym Sci 92:3697–3700CrossRefGoogle Scholar
  61. Touhara H, Okino F (2000) Property control of carbon materials by fluorination. Carbon 38:241–267CrossRefGoogle Scholar
  62. Touhara H, Inahara J, Mizuno T, Yokoyama Y, Okanao S, Yanagiuch K, Mukopadhyay I, Kawasaki S, Okino F, Shirai H, Xu WH, Kyotani T, Tomita A (2002) Property control of new forms of carbon materials by fluorination. J Fluor Chem 114:181–188CrossRefGoogle Scholar
  63. Tsang SC, Chen YK, Harris PJF, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162CrossRefGoogle Scholar
  64. Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, Ryu CY, Ajayan PM (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Am Chem Soc 125:9258–9259CrossRefGoogle Scholar
  65. Wu W, Zhang S, Li Y, Li J, Liu L, Qin Y, Guo Z-X, Dai L, Ye C, Zhu D (2003) PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 36:6286–6288CrossRefGoogle Scholar
  66. Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886CrossRefGoogle Scholar
  67. Xu Y, Gao C, Kong H, Yan D, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853CrossRefGoogle Scholar
  68. Yang Y, Wang X, Liu L, Xie X, Yang Z, Li RKY, Mai Y-W (2007) Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains. J Phys Chem C 111:11231–11239CrossRefGoogle Scholar
  69. Yao Z, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes––preparation and characterization of nanocomposites. J Am Chem Soc 125:16015–16024CrossRefGoogle Scholar
  70. Yudanov NF, Okotrub AV, Shubin YV, Yudanova LI, Bulusheva LG, Chuvilin AL, Bonard JM (2002) Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem Mater 14:1472–1476CrossRefGoogle Scholar
  71. Yudasaka M, Zhang M, Jabs C, Iijima S (2001) Effect of an organic polymer in purification and cutting of single-wall carbon nanotubes. Appl Phys A 71:449–451CrossRefGoogle Scholar
  72. Zeng H, Gao C, Yan D (2006a) Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818CrossRefGoogle Scholar
  73. Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D (2006b) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 47:113–122CrossRefGoogle Scholar
  74. Zengin H, Zhou W, Jin J, Czerw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483CrossRefGoogle Scholar
  75. Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AN, Lozano K, Barrera EV (2004) Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14:643–648CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Reza Sepahvand
    • 1
    • 2
  • Mohsen Adeli
    • 2
    • 3
  • Bandar Astinchap
    • 1
  • Roya Kabiri
    • 4
  1. 1.Department of Physics, Faculty of ScienceLorestan UniversityKhoramabadIran
  2. 2.Nanotechnology CenterLorestan UniversityKhoramabadIran
  3. 3.Department of Chemistry, Faculty of ScienceLorestan UniversityKhoramabadIran
  4. 4.Lab of NMR, Faculty of ChemistryTabriz UniversityTabrizIran

Personalised recommendations