Journal of Nanoparticle Research

, Volume 10, Issue 8, pp 1349–1354 | Cite as

Synthesis of C–N nanotube blocks and Y-junctions in bamboo-like C–N nanotubes

  • Ram Manohar Yadav
  • Dinesh Pratap Singh
  • T. Shripathi
  • O. N. Srivastava
Brief Communication


We report the observations made on the synthesis and characterization of C–N nanotube blocks and Y-junctions in bamboo-like C–N nanotubes. The C–N nanotube Blocks have been synthesized by pyrolyzing the mixture of silver nitrate acetonitrile solution and ferrocene benzene solution. The structural/microstructural characterization of the as-synthesized material has been done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) analysis has been carried out to confirm the presence of nitrogen in nanotubes. These investigations reveal the formation of blocks of bamboo-like nanotubes having the dimension 300 × 200 × 30 μm and the diameter is 20–50 nm. We also observe the formation of Y-junctions in bamboo-like nanotubes as we spray the acetonitrile ferrocene and AgNO3 mixture. The length of the synthesized Y-junction nanotube bundles is ~2 μm. Some more complex Ψ-shaped junctions are also found to be present. The diameters of the Y-junction nanotubes is ~80 nm at the junction and 25–50 nm at the branches.


Nanotubes Bamboo-like Y-junction Electron microscopy Nanostructure 



The authors are extremely grateful to Prof. CNR Rao, Late Dr. A. K. Singh, Prof. R. S. Tiwari, & Prof. S. Ram for their encouragement. The authors acknowledge with gratitude the financial supports from DST:UNANST, Council of Scientific and Industrial Research (CSIR) and University Grant Commission (UGC) New Delhi, India.


  1. Andriotis AN, Menon M (2006) Are electrical switching and rectification inherent properties of carbon nanotube Y junctions? Appl Phys Lett 89:132116–132119CrossRefGoogle Scholar
  2. Banghman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344CrossRefGoogle Scholar
  3. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 75:3129–3131CrossRefGoogle Scholar
  4. Collins P, Avouris P (2000) Nanotubes for electronics. Sci Am 62:283–291Google Scholar
  5. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709CrossRefGoogle Scholar
  6. Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRefGoogle Scholar
  7. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746CrossRefGoogle Scholar
  8. Heyning OT, Bernier P, Glerup M (2005) A low cost method for the direct synthesis of highly Y-branched nanotubes. Chem Phys Lett 409:43–47CrossRefGoogle Scholar
  9. Kouwenhoven L (1997) Single-molecule transistors. Science 275:1896–1897CrossRefGoogle Scholar
  10. Lee GB, Huang A, Ho CM, Jiang F, Grosjean C, Tai YC (2000) Sensing and control of aerodynamic separation by MEMS. Chin J Mech 16:45–52Google Scholar
  11. Mc Euen PL (1998) Nanotechnology carbon-based electronics. Nature 393:15–17CrossRefGoogle Scholar
  12. Meng FY, Shi SQ, Xu DS, Chan CT (2006) Mechanical properties of ultrathin carbon nanotube junctions. Model Simul Mater Sci Eng 14:S1–S8CrossRefGoogle Scholar
  13. Nath M, Satishkumar BC, Govindraj A, Vinod CP, Rao CNR (2000) Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem Phys Lett 322:333–340CrossRefGoogle Scholar
  14. Papadopoulos C, Rakitin A, Li J, Vedeneev AS, Xu JM (2000) Electronic transport in Y-junction carbon nanotubes. Phys Rev Lett 85:3476–3479CrossRefGoogle Scholar
  15. Papadopoulos C, Yin AJ, Xu JM (2004) Temperature-dependent studies of Y-junction carbon nanotube electronic transport. Appl Phys Lett 85:1769–1771CrossRefGoogle Scholar
  16. Qiang L, Wei L, Zhi-Min C, Wei-Guo S, Li-Jun W (2007) Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon 45:268–273CrossRefGoogle Scholar
  17. Satish Kumar BC, John Thomas P, Govindraj A, Rao CNR (2000) Y-junction carbon nanotubes. Appl Phys Lett 77:2530–2532CrossRefGoogle Scholar
  18. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52CrossRefGoogle Scholar
  19. Yadav RM, Srivastava A, Srivastava ON (2004) Synthesis of bamboo-shaped carbon-nitrogen nanotubes using acetonitrile-ferrocene precursor. J Nanosci Nanotechnol 4:719–721CrossRefGoogle Scholar
  20. Yadav RM, Sripathi T, Srivastava A, Srivastava ON (2005) Effect of ferrocene concentration on the synthesis of bamboo-shaped carbon–nitrogen nanotube bundles. J Nanosci Nanotechnol 5:820–824CrossRefGoogle Scholar
  21. Yao Z, Ch Postma HW, Balents L, Dekker C (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ram Manohar Yadav
    • 1
    • 2
  • Dinesh Pratap Singh
    • 1
  • T. Shripathi
    • 3
  • O. N. Srivastava
    • 1
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of PhysicsVSSD (PG) College KanpurKanpurIndia
  3. 3.UGC-DAE Consortium for Scientific ResearchIndore CentreIndoreIndia

Personalised recommendations