Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 623–633 | Cite as

Gold and gold–silver core-shell nanoparticle constructs with defined size based on DNA hybridization

  • Andrea Steinbrück
  • Andrea Csaki
  • Kathrin Ritter
  • Martin Leich
  • J. Michael  Köhler
  • Wolfgang Fritzsche
Research paper


Nanoparticles represent versatile building blocks in material science and nanotechnology. Thereby, the defined assembly of nanostructures (13 and 56 nm in diameter, respectively) is of significant importance. Short DNA sequences can be bound to the nanoparticle surface thus enabling highly specific DNA hybridization-driven events that direct the formation of nanoparticle constructs.

In this paper, examples for the defined formation of gold nanoparticle constructs are demonstrated. In addition, gold–silver core-shell nanoparticles are introduced as further building blocks for the hybridization-controlled formation of nanoparticle constructs.


Gold Silver Nanoparticle Core-shell DNA Hybridization TEM UV–Vis spectroscopy Guided assembling Nanostructure 



We would like to acknowledge financial support from the European Union (project NUCAN; NMP-STREP 013775) and Katrin Buder (FLI Jena) for help with TEM measurements.


  1. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of “nanocrystal molecules” using DNA. Nature 382:609–611PubMedCrossRefADSGoogle Scholar
  2. Cao Y-W, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962PubMedCrossRefGoogle Scholar
  3. Csaki A, Maubach G, Born D, Reichert J, Fritzsche W (2002) DNA-based molecular nanotechnology. Single Mol 3:275–280CrossRefADSGoogle Scholar
  4. Csaki A, Kaplanek P, Möller R, Fritzsche W (2003) The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 14:1262–1268CrossRefADSGoogle Scholar
  5. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedCrossRefGoogle Scholar
  6. Elghanian R, Stofhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081PubMedCrossRefGoogle Scholar
  7. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature: Phys Sci 241:20–22ADSGoogle Scholar
  8. Fritzsche W, Taton TA (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14:R63–R73CrossRefADSGoogle Scholar
  9. Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306CrossRefGoogle Scholar
  10. Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654PubMedCrossRefGoogle Scholar
  11. Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters, Springer series in materials science, vol 25. Springer, HeidelbergGoogle Scholar
  12. Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res 30:1558–1562PubMedCrossRefGoogle Scholar
  13. Link S, El-Sayed M (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  14. Loweth CJ, Caldwell WB, Peng X, Alivisatos AP, Schultz PG (1999) DNA als Gerüst zur Bildung von Aggregaten aus Gold-Nanokristallen. Angew Chem 111:1925–1929CrossRefGoogle Scholar
  15. Mie G (1908) Beitrage zur Optik trüber Medien speziell kolloidaler Metallösungen. Ann Phys 25:377–445CrossRefGoogle Scholar
  16. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609PubMedCrossRefADSGoogle Scholar
  17. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759CrossRefADSGoogle Scholar
  18. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675CrossRefGoogle Scholar
  19. Nykypanchuk D, Maye MM, van der Lelie D, Gang O (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–552PubMedCrossRefADSGoogle Scholar
  20. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556PubMedCrossRefADSGoogle Scholar
  21. Rasband WS, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,, 1997–2007
  22. Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano lett 3:935–938CrossRefGoogle Scholar
  23. Reynolds RA III, Mirkin CA, Letsinger RL (2000) Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J Am Chem Soc 122:3795–3796CrossRefGoogle Scholar
  24. Schmid G (2003) Nanoparticles—From theory to applications. Wiley-VCH, WeinheimGoogle Scholar
  25. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745PubMedCrossRefGoogle Scholar
  26. Steinbrück A, Csaki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core-shell bimetal nanoparticles. Plasmonics 1:79–85CrossRefGoogle Scholar
  27. Steinbrück A, Csaki A, Ritter K, Leich M, Köhler JM, Fritzsche W (2008) Gold–silver and silver–silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. J Biophotonics 1:104–113.CrossRefGoogle Scholar
  28. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964CrossRefGoogle Scholar
  29. Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165PubMedCrossRefGoogle Scholar
  30. Tokareva I, Hutter E (2004) Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films. J Am Chem Soc 124:15784–15789CrossRefGoogle Scholar
  31. Turkevich J, Stevenson PL, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  32. Yao H, Yi C, Tzang C-H, Zhu J, Yang M (2007) DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures. Nanotechnology 18:015102CrossRefADSGoogle Scholar
  33. Yguerabide J, Yguerabide E (1998a) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications I. Theory. Anal Biochem 262:137–156PubMedCrossRefGoogle Scholar
  34. Yguerabide J, Yguerabide E (1998b) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications II. Experimental characterization. Anal Biochem 262:157–176PubMedCrossRefGoogle Scholar
  35. Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano lett 1:32–35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Andrea Steinbrück
    • 1
  • Andrea Csaki
    • 1
  • Kathrin Ritter
    • 2
  • Martin Leich
    • 2
  • J. Michael  Köhler
    • 2
  • Wolfgang Fritzsche
    • 1
  1. 1.Nanobiophotonics DepartmentInstitute of Photonic TechnologyJenaGermany
  2. 2.Department of Physical Chemistry and Microreaction TechnologyTechnical University Ilmenau, Institute for Micro and NanotechnologyIlmenauGermany

Personalised recommendations