Advertisement

Journal of Nanoparticle Research

, Volume 10, Supplement 1, pp 97–106 | Cite as

Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization

  • Fraser Douglas
  • Ramon Yañez
  • Josep Ros
  • Sergio Marín
  • Alfredo de la  Escosura-Muñiz
  • Salvador Alegret
  • Arben MerkoçiEmail author
Research Paper

Abstract

Simple strategies for producing silver and gold nanoparticles (AgNP and AuNP) along with the corresponding core shell nanoparticles (Au–Ag and Ag–Au) by reduction of the metal salts AgBF4 and HAuCl4 by NaBH4 in water will be presented. The morphologies of the obtained nanoparticles are determined by the order of addition of reactants. The obtained NPs, with sizes in the range 3–40 nm, are characterized by transmission electronic microscopy (TEM) and UV–Vis absorption spectroscopy, so as to evaluate their qualities. Moreover, a direct electrochemical detection protocol based on a cyclic voltammetry in water solution that involves the use of glassy carbon electrode is also applied to characterize the prepared NPs. The developed NPs and the related electroanalytical method seem to be with interest for future sensing and biosensing applications including DNA sensors and immunosensors.

Keywords

Gold nanoparticles Silver nanoparticles Au–Ag nanoparticles Ag–Au nanoparticles Cyclic voltammetry Colloids 

Notes

Acknowledgments

This work is supported by Projects: MAT2005-03553 and Consolider-Ingenio 2010, Project CSD2006-00012. CTQ2007-63913

Supplementary material

11051_2008_9374_MOESM1_ESM.doc (1.2 mb)
(DOC 1225 kb)

References

  1. Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240CrossRefGoogle Scholar
  2. Berry V, Saraf RF (2005) Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chem Int Ed 44:6668–6673CrossRefGoogle Scholar
  3. Brust M, Kiely CJ (2004) Monolayer protected clusters of gold and silver. Colloid Colloid Assemblies 3:96–119Google Scholar
  4. Castañeda MT, Merkoçi A, Pumera M, Alegret S (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron 22:1961–1967CrossRefGoogle Scholar
  5. Chumanov G, Sokolov K, Cotton TM (1996) Unusual extinction spectra of nanometer-sized silver patricles arranged in two-dimensional arrays. J Phys Chem 100:5166–5168CrossRefGoogle Scholar
  6. Davis RE, Swain CG (1960) General acid catalysis of the hydrolysis of sodium borohydride. J Am Chem Soc 82:5949–5950CrossRefGoogle Scholar
  7. Davis RE, Bromels E, Kibby CL (1962) Hydrolysis of sodium borohydride in aqueous solution. J Am Chem Soc 84:885–892CrossRefGoogle Scholar
  8. Dirk L, Hyning V, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14:7034–7046CrossRefGoogle Scholar
  9. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  10. Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181CrossRefGoogle Scholar
  11. Grace AN, Pandian K (2006) One pot synthesis of polymer protected gold nanoparticles and nanoprisims in glycerol. Colloid Surf A: Physicochem Eng Aspect 290:138–142CrossRefGoogle Scholar
  12. Huang JL, Li QB, Sun DH (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:Art. No. 105104Google Scholar
  13. Kim D, Park J, An K, Yang NK, Park JG, Hyeon T (2007) Synthesis of hollow iron nanoframes. J Am Chem Soc (Communication) 129:5812–5813CrossRefGoogle Scholar
  14. Lu X, Tuan HY, Chen J, Li ZY, Korgel BA, Xia Y (2007) Mechanistic Studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J Am Chem Soc 129:1733–1742CrossRefGoogle Scholar
  15. Merkoçi A (2007) Electrochemical biosensing with nanoparticles. FEBS J 274:310–316CrossRefGoogle Scholar
  16. Merkoçi A, Aldavert M, Marín S, Alegret S (2005) New materials for electrochemical sensing. V. Nanoparticles for DNA labeling. Trend Anal Chem 24:341–349CrossRefGoogle Scholar
  17. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  18. Neri A (1629) L’Arte Vetraria. Florence 7:129Google Scholar
  19. Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakawa S, Watanabe SJ (2004) Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J Inorg Biochem 98:46–60CrossRefGoogle Scholar
  20. Ozin GA (1992) Nanochemistry: synthesis in diminishing dimensions. Adv Mater 4:612–649CrossRefGoogle Scholar
  21. Papavassiliou GC (1976) Surface plasmons in small Au–Ag alloy particles. J Phys F: Metal Phys 6:103–105CrossRefGoogle Scholar
  22. Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005) Magnetically trigged direct electrochemical detection of DNA hybridization based Au67 Quantum Dot—DNA—paramagnetic bead conjugate. Langmuir 21:9625–9629CrossRefGoogle Scholar
  23. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727CrossRefGoogle Scholar
  24. Schmid G, Lehnert A, Malm JO, Bovin JO (1991) Experimental relations of gold (and other metals) to light. Angew Chem Int Ed 30:874–876CrossRefGoogle Scholar
  25. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110:19935–19944CrossRefGoogle Scholar
  26. Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325CrossRefGoogle Scholar
  27. Sun L, Wei G, Song Y, Liu Z, Wang L, Li Z (2006) Solution-phase synthesis of Au@ZnO core-shell composites. Mater Lett 60:1291–1295CrossRefGoogle Scholar
  28. Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) New approach to antibacterial treatment of cotton fabric with silver nanoparticle-doped silica using a sol-gel process. J Appl Polym Sci 101:2938–2943CrossRefGoogle Scholar
  29. Toshima N, Harada M, Yamazaki Y, Asakura K (1992) Catalytic activity and structural analysis of polymer-protected Au–Pd bimetallic clusters prepared by the simultaneous reduction of HAuCl4 and PdCl2. J Phys Chem 96:9927–9933CrossRefGoogle Scholar
  30. Vlčková B, Gu XJ, Tsai DP, Moskovits M (1996) A microscopic surface-enhanced Raman Study of a single adsorbate-covered collodial silver aggregate. J Phys Chem 100:3169–3174CrossRefGoogle Scholar
  31. Wu X, Zou B, Xu J, Yut B, Tang G, Zhang G, Cheng W (1997) Structural characterization and optical properties of nanometer-sized SnO2 capped by stearic acid. Nanostruct Mat 8:179–189CrossRefGoogle Scholar
  32. Xu ZC, Shen CM, Xiao CW (2007) Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology 18:Art. No. 115608Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Fraser Douglas
    • 1
  • Ramon Yañez
    • 1
  • Josep Ros
    • 1
  • Sergio Marín
    • 2
    • 3
  • Alfredo de la  Escosura-Muñiz
    • 2
  • Salvador Alegret
    • 3
  • Arben Merkoçi
    • 2
    • 3
    Email author
  1. 1.Unitat de Química Inorgànica, Departament de QuímicaUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Nanobioelectronics & Biosensors GroupInstitut Català de NanotecnologiaBellaterraSpain
  3. 3.Group of Sensors & Biosensors, Departament de QuímicaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations