Journal of Nanoparticle Research

, Volume 10, Issue 6, pp 925–934 | Cite as

Preparation of nanoparticles by continuous-flow microfluidics

  • Andreas JahnEmail author
  • Joseph E. Reiner
  • Wyatt N. Vreeland
  • Don L. DeVoe
  • Laurie E. Locascio
  • Michael Gaitan


We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.


Nanoparticles Continuous flow microfluidics Particle formation Liposomes Emulsions Metal colloids Nanomanufacturing 


  1. Abraham SA et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97CrossRefGoogle Scholar
  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937CrossRefGoogle Scholar
  3. Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97CrossRefGoogle Scholar
  4. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82(3):364–366CrossRefGoogle Scholar
  5. Ayyagari AL et al (2006) Long-circulating liposomal contrast agents for magnetic resonance imaging. Mag Reson Med 55(5):1023–1029CrossRefGoogle Scholar
  6. Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019CrossRefGoogle Scholar
  7. Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215CrossRefGoogle Scholar
  8. Brazhnik KP et al (2005) Directed growth of pure phosphatidylcholine nanotubes in microfluidic channels. Langmuir 21(23):10814–10817CrossRefGoogle Scholar
  9. Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861CrossRefGoogle Scholar
  10. Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3(2):199–201CrossRefGoogle Scholar
  11. Christopher GF et al (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336CrossRefGoogle Scholar
  12. Cottam BF et al (2007) Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab Chip 7(2):167–169CrossRefGoogle Scholar
  13. Crosasso P et al (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63(1–2):19–30CrossRefGoogle Scholar
  14. Dittrich PS et al (2006) On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab Chip 6(4):488–493CrossRefGoogle Scholar
  15. Edel JB et al (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137Google Scholar
  16. Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRefGoogle Scholar
  17. Gulsen D, Li CC, Chauhan A (2005) Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 30(12):1071–1080CrossRefGoogle Scholar
  18. Hung LH et al (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6(2):174–178CrossRefGoogle Scholar
  19. Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22(2):197–224CrossRefGoogle Scholar
  20. Jahn A et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23(11):6289–6293CrossRefGoogle Scholar
  21. Jahn A et al (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675CrossRefGoogle Scholar
  22. Jensen KF (2001) Microreaction engineering - is small better? Chem Eng Sci 56(2):293–303CrossRefGoogle Scholar
  23. Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51CrossRefGoogle Scholar
  24. Kelly BT et al (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun (18):1773–1788Google Scholar
  25. Khan SA et al (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611CrossRefGoogle Scholar
  26. Kikuchi H et al (1999) Gene delivery using liposome technology. J Control Release 62(1–2):269–277CrossRefGoogle Scholar
  27. Knight JB et al (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866CrossRefGoogle Scholar
  28. Kremer JMH et al (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16(17):3932–3935CrossRefGoogle Scholar
  29. Kuribayashi K et al (2006) Electroformation of giant liposomes in microfluidic channels. Meas Sci Technol 17(12):3121–3126CrossRefGoogle Scholar
  30. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854CrossRefGoogle Scholar
  31. Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256(1):1–11Google Scholar
  32. Lin XZ, Terepka AD, Hong Y (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4(11):2227–2232CrossRefGoogle Scholar
  33. Lin Y-C, Li M, Wang Y-T, Lai T-H, Chaing J-T, Huang K-S (2005) A new method for the preparation of self-assembled phospholipid microtubes using microfluidic technology. Seoul, Korea, pp 1592–1595Google Scholar
  34. Link DR et al (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):Art. No. 054503Google Scholar
  35. Litzinger DC et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta Biomembr 1190(1):99–107CrossRefGoogle Scholar
  36. Luan WL et al (2007) Open-to-air synthesis of monodisperse CdSe nanocrystals via microfluidic reaction and its kinetics. Nanotechnology 18(17):175603 (6 pp)Google Scholar
  37. Mamot C et al (2003) Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 6(5):271–279CrossRefGoogle Scholar
  38. Martina MS et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127(30):10676–10685CrossRefGoogle Scholar
  39. Maulucci G et al (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88(5):3545–3550CrossRefGoogle Scholar
  40. Mayer LD et al (2000) Designing liposomal anticancer drug formulations for specific therapeutic applications. J Liposome Res 10(2–3):99–115CrossRefGoogle Scholar
  41. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446CrossRefGoogle Scholar
  42. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  43. Mulder WJM et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164CrossRefGoogle Scholar
  44. Nakamura H et al (2004) Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis. Lab Chip 4(3):237–240CrossRefGoogle Scholar
  45. Pavelic Z et al (2005) Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release 106(1–2):34–43CrossRefGoogle Scholar
  46. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117CrossRefGoogle Scholar
  47. Ramachandran S et al (2006) Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence Imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir 22(19):8156–8162CrossRefGoogle Scholar
  48. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784CrossRefGoogle Scholar
  49. Sadava D, Coleman A, Kane SF (2002) Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res 12(4):301–309CrossRefGoogle Scholar
  50. Saito R et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389CrossRefGoogle Scholar
  51. Schmid MH, Korting HC (1994) Liposomes - a drug carrier system for topical treatment in dermatology. Crit Rev Ther Drug Carrier Syst 11(2–3):97–118Google Scholar
  52. Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321CrossRefGoogle Scholar
  53. Sounart TL et al (2007) Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip 7(7):908–915CrossRefGoogle Scholar
  54. Stroock AD et al (2002) Chaotic mixer for microchannels. Science 295(5555):647–651CrossRefGoogle Scholar
  55. Sugiura S et al (2001a) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566CrossRefGoogle Scholar
  56. Sugiura S et al (2001b) Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification. J Chem Eng Japan 34(6):757–765CrossRefGoogle Scholar
  57. Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRefGoogle Scholar
  58. Templeton NS et al (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15(7):647–652CrossRefGoogle Scholar
  59. Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRefGoogle Scholar
  60. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 13(11):3843–3858CrossRefGoogle Scholar
  61. Wagner A et al (2002) The crossflow injection technique: an improvement of the ethanol injection method. J Liposome Res 12(3):259–270CrossRefGoogle Scholar
  62. Wang HZ et al (2004) Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. Chem Commun (1):48–49Google Scholar
  63. Wang HZ et al (2002) Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun (14):1462–1463Google Scholar
  64. Wu L et al (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89(14):Art. No. 144106Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Andreas Jahn
    • 1
    • 2
    Email author
  • Joseph E. Reiner
    • 1
  • Wyatt N. Vreeland
    • 1
  • Don L. DeVoe
    • 2
  • Laurie E. Locascio
    • 1
  • Michael Gaitan
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations