Journal of Nanoparticle Research

, Volume 10, Issue 7, pp 1149–1154 | Cite as

Hydrothermal synthesis and photoluminescent properties of YV1 − xPxO4:Eu3+ (x = 0–1.0) nanophosphors

  • Hongliang Zhu
  • Hong Yang
  • Dalai Jin
  • Zhengkai Wang
  • Xiaoyun Gu
  • Xiaohui Yao
  • Kuihong Yao
Research Paper

Abstract

A simple hydrothermal process has been proposed to systematically synthesize europium-doped yttrium phosphate-vanadates with general formula YV1 − xPxO4:Eu3+ (x = 0–1.0). All the YV1 − xPxO4:Eu3+ products were characterized by x-ray diffraction (XRD) and transmission electron microscopy (TEM), the results of which revealed they were single-phase tetragonal-structured nanocrystals with diameter of 20 nm and their cell parameter a exhibited a linear relationship with the x value. Photoluminescence (PL) excitation and emission intensities of the products were sensitive to the x value and the change of the PL intensity with x was a wave-like curve which reached the peak at x = 0.4 and 0.8. In addition, the x value had an obvious influence on the (5D07F2)/(5D07F1) intensity ratio of Eu3+.

Keywords

Nanophosphors Nanostructures Phosphate–vanadates Hydrothermal method 

Notes

Acknowledgments

This work was supported by the Open Foundation Project of the State Key Lab of Silicon Materials (No. 200601).

References

  1. Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103CrossRefGoogle Scholar
  2. Liu X, Lin J (2007) Synthesis and characterization of monodisperse spherical core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphors for field emission displays. J Nanopart Res 9:869–875CrossRefGoogle Scholar
  3. Chander H (2005) Development of nanophosphors—a review. Mater Sci Eng R 49:113–155CrossRefGoogle Scholar
  4. Yu M, Lin J, Fu J, Han YC (2003) Sol–gel fabrication, patterning and photoluminescent properties of LaPO4:Ce3+,Tb3+ nanocrystalline thin films. Chem Phys Lett 371:178–183Google Scholar
  5. Rao RP (2005) Tm3+ activated lanthanum phosphate: a blue PDP phosphor. J Lumin 113:271–278CrossRefGoogle Scholar
  6. Riwotzki K, Haase M (1998) Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J Phys Chem B 102:10129–10135CrossRefGoogle Scholar
  7. Huignard A, Buissette V, Franville AC, Gacoin T, Boilot JP (2003) Emission processes in YVO4:Eu nanoparticles. J Phys Chem B 107:6754–6759CrossRefGoogle Scholar
  8. Guan M, Sun J, Han M, Xu Z, Tao F, Yin G, Wei X, Zhu J, Jiang X (2007) Synthesis and luminescence of CePO4 and CePO4:Tb hollow and core-shell microspheres composed of single-crystal nanorods. Nanotechnology 18:415602–415607CrossRefGoogle Scholar
  9. Riwotzki K, Haase M (2001) Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles: luminescence and energy transfer processes. J Phys Chem B 105:12709–12713CrossRefGoogle Scholar
  10. Wu CC, Chen KB, Lee CS, Chen TM, Cheng BM (2007) Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor. Chem Mater 19:3278–3285CrossRefGoogle Scholar
  11. Shimomura Y, Kurushima T, Olivia R, Kijima N (2005) Synthesis of Y(P,V)O4:Eu3+ red phosphor by spray pyrolysis without postheating, Jpn. J Appl Phys 44:1356–1360CrossRefGoogle Scholar
  12. Sohn KS, Zeon IW, Chang H, Lee SK, Park HD (2002) Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R = As, Nb, P, V) system. Chem Mater 14:2140–2148CrossRefGoogle Scholar
  13. Lai H, Chen B, Xu W, Xie Y, Wang X, Di W (2006) Fine particles (Y,Gd)PxV1 − xO4:Eu3+ phosphor for PDP prepared by coprecipitation reaction. Mater Lett 60:1341–1343CrossRefGoogle Scholar
  14. Yan B, Su X (2005) In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1 − xO4:Eu3+ micron crystalline phosphors. Mater Sci Eng B 116:196–201CrossRefGoogle Scholar
  15. Yu M, Lin J, Wang SB (2005) Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YVxP1 − xO4:Eu3+ and RVO4:Eu3+ thin-film phosphors. Appl Phys A 80:353–360CrossRefGoogle Scholar
  16. Fang Y, Xu A, Song R, Zhang H, You L, Yu JC, Liu H (2003) Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. J Am Chem Soc 125:16025–16034CrossRefGoogle Scholar
  17. Sun Y, Liu H, Wang X, Kong X, Zhang H (2006) Optical spectroscopy and visible upconversion studies of YVO4:Er3+ nanocrystals synthesized by a hydrothermal process. Chem Mater 18:2726–2732CrossRefGoogle Scholar
  18. Ropp RC, Carroll B (1975) Yttrium phosphate–yttrium vanadate solid solutions and Vegard’s law. Inorg Chem 14:2199–2202CrossRefGoogle Scholar
  19. Li Y, Hong G (2005) Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+. J Solid State Chem 178:645–649CrossRefGoogle Scholar
  20. Yan B, Su X (2007) Chemical co-precipitation synthesis and photoluminescence of LnPxV1 − xO4:Dy3+ (Ln = Gd, La) derived from assembling hybrid precursors. J Alloy Compd 431:342–347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hongliang Zhu
    • 1
  • Hong Yang
    • 1
  • Dalai Jin
    • 1
  • Zhengkai Wang
    • 1
  • Xiaoyun Gu
    • 1
  • Xiaohui Yao
    • 1
  • Kuihong Yao
    • 1
  1. 1.Center of Materials EngineeringZhejiang Sci-Tech UniversityHangzhouP.R. China

Personalised recommendations