Journal of Nanoparticle Research

, Volume 10, Issue 5, pp 871–875 | Cite as

Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity

  • Shoumin Zhang
  • Yanyan Chen
  • Ying Yu
  • Haihong Wu
  • Shurong Wang
  • Baolin Zhu
  • Weiping Huang
  • Shihua Wu
Brief Communication

Abstract

Cr-doped TiO2 nanotubes (Cr/TiO2 NTs) with high photocatalytic activity were prepared by the combination of sol–gel process with hydrothermal treatment. XRD, TEM and UV–vis DRS techniques were employed for microstructural characterization. TEM images show that Cr/TiO2 NTs are in good tubular structure and have diameter of about 10 nm. The Cr doping induces the shift of the absorption edge to the visible light range and the narrowing of the band gap. The photocatalytic experiment reveals that the photocatalytic performance of TiO2 NTs can be improved by the doping of chromium ions.

Keywords

Titanium dioxide Nanotubes Doping Chromium ions Photocatalytic activity Sol–gel process Catalyst 

Notes

Acknowlegement

This work was supported by 973 Program (2005CB623607).

References

  1. Anpo M (1997) Photocatalysis on titanium oxide catalysts—Approaches in achieving highly efficient reactions and realizing the use of visible light. Catal Surv Jap 1:169–179CrossRefGoogle Scholar
  2. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516CrossRefGoogle Scholar
  3. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J Am Ceram Soc 80(12):3157–3171CrossRefGoogle Scholar
  4. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377CrossRefGoogle Scholar
  5. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(30):456–458Google Scholar
  6. Geng WT, Kim Kwang S (2004) Interplay of local structure and magnetism in Co-doped TiO2 anatase. Solid State Commun 129:741–746CrossRefGoogle Scholar
  7. Ghicov A, Schmidt B, Kunze J, Schmuki P (2007) Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem Phys Lett 433(4–6):323–326CrossRefGoogle Scholar
  8. Hodos M, Horvath E, Haspel H, Kukovecz A, Konya Z, Kiricsi I (2004) Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem Phys Lett 399:512–515CrossRefGoogle Scholar
  9. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania Nanotubes Prepared by Chemical Processing. Adv Mater 11(15):1307–1311CrossRefGoogle Scholar
  10. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19(2):628–634CrossRefGoogle Scholar
  11. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42(40):4908–4911CrossRefGoogle Scholar
  12. Sekino T, Okamoto T, Kasuga T, Kusunose T, Nakayama T, Niihara K (2006) Synthesis and properties of titania nanotube doped with small amount of cations. Key Eng Mater 317–318:251–254CrossRefGoogle Scholar
  13. Song XC, Zheng YF, Yin HY, Cao GS (2005) Synthesis and characterization of transition element substituted titanate nanotubes. Acta Phys Chim Sin 21(10):1076–1080Google Scholar
  14. Wang ZP, Cai WM, Hong XT, Zhao XL, Xu F, Cai CG (2005) Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl Catal B-Environ 57:223–231Google Scholar
  15. Xu JC, Lu M, Guo XY, Li HL (2005) Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J Mol Catal A Chem 226:123–127CrossRefGoogle Scholar
  16. Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Guo XY, Zhang ZJ (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans, 3898–3901Google Scholar
  17. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82(2):281–283CrossRefGoogle Scholar
  18. Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816CrossRefGoogle Scholar
  19. Zhu BL, Sui ZM, Wang SR, Chen X, Zhang SM, Wu SH, Huang WP (2006) Alternative approaches to fabrication of gold-modified TiO2 nanotubes. Mater Res Bull 41:1097–1104Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Shoumin Zhang
    • 1
  • Yanyan Chen
    • 1
  • Ying Yu
    • 1
  • Haihong Wu
    • 1
  • Shurong Wang
    • 1
  • Baolin Zhu
    • 1
  • Weiping Huang
    • 1
  • Shihua Wu
    • 1
  1. 1.Department of ChemistryNankai UniversityTianjinP.R. China

Personalised recommendations