Journal of Nanoparticle Research

, Volume 10, Issue 4, pp 559–566

Biomimetic synthesis of HgS nanoparticles in the bovine serum albumin solution

  • De Zhi Qin
  • Xiao Ming Ma
  • Lin Yang
  • Li Zhang
  • Zhong Jun Ma
  • Jie Zhang
Research Paper

Abstract

HgS nanocrystals conjugated with protein were synthesized in aqueous solution of Bovine Serum Albumin (BSA) at room temperature. The obtained HgS nanoparticles with average diameter about 20–40 nm were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The quantum-confined effect of the HgS nanoparticles is confirmed by the ultraviolet-visible (UV-vis) and photoluminescence (PL) spectrum. The rescults indicate that the BSA not only induce the nucleation, but inhibit the further growth of HgS nanoparticles. The effect of Hg2+ on BSA and the change of BSA conformation were studied through Fourier transform infrared (FTIR) spectroscopy and Circular dichroism (CD) spectroscopy. The possible mechanism of HgS nanoparticles growth in the BSA solution was also discussed.

Keywords

Mercury(II) sulfide Nanoparticles Biomimetic synthesis BSA Colloids Nanobiotechnology 

References

  1. Addadi L, Weiner S, Geva M (2001) On how proteins interact with crystals and their effect on crystal formation. Z Kardiol 90:92–98CrossRefGoogle Scholar
  2. Bao HB, Gong YJ, Li Z, Gao MY (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16:3853–3859CrossRefGoogle Scholar
  3. Berman A, Hanson H, Leiserowitz L, Koetzle TF, Weiner S, Addadi L (1993) Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science 259:776–779CrossRefGoogle Scholar
  4. Coffer JL, Bigham SR, Li X, Pinizzotto RF, Rho YG, Pirtle RM, Pirtle IL (1996) Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNAppl A. Phys Lett 69:3851–3853Google Scholar
  5. Falini J, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  6. Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M., Gösele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater 5(8):627–631CrossRefGoogle Scholar
  7. Gao M, Richter B, Kirstein S, Mohwald H (1998) Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles. J Phys Chem B 102:4096–4103CrossRefGoogle Scholar
  8. Gao MY, Zhang X, Yang B, Li F, Shen JC (1996) Assembly of modified CdS particles/cationic polymer based on electrostatic interactionsn. Thin Solid Films 284–285:242–245CrossRefGoogle Scholar
  9. Gelamo EL, Silva TCHP, Imasato H, Tabak M (2002) Interaction of bovine (BSA) and human (HSA) serum albumin with ionic surfactants: spectroscopy and modelling. Biochim Biophys Acta 1594:84–99Google Scholar
  10. Ghezelbash A, Korgel BA (2005) Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 21:9451–9456CrossRefGoogle Scholar
  11. Guharay J, Sengupta B, Sengupta PK (2001) Protein—flavonol interaction: fluorescence spectroscopic study. Proteins Struct Funct Genet 43:75–81CrossRefGoogle Scholar
  12. Higginson KA, Kuno M, Bonevich J, Qadri SB, Yousuf M, Mattoussi H (2002) Synthesis and characterization of colloidal β-HgS quantum dots. J Phys Chem B 106:9982–9985CrossRefGoogle Scholar
  13. Izhaky D, Addadi L (1998) Pattern recognition of antibodies for two-dimensional arrays of molecules. Adv Mater 10:1009–1013CrossRefGoogle Scholar
  14. Jackson M, Haris P, Chapman D (1991) Fourier transform infrared spectroscopic studies of calcium-binding proteins. Biochemistry 30:9681–9686CrossRefGoogle Scholar
  15. Jimenez-Lopez C, Rodriguez-Navarro A, Dominguez-Vera JM, Garcia-Ruiz JM (2003) Influence of lysozyme on the precipitation of calcium carbonate kinetic and morphological study. Geochim Cosmochim Acta 67:1667–1676CrossRefGoogle Scholar
  16. Lee SM, Jun YW, Cho SN, Cheon J (2002) Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. Am J Chem Soc 124:11244–11245CrossRefGoogle Scholar
  17. Liu T, Xie Y, Chu B (2000) Use of block copolymer micelles on formation of hollow MoO3 nanospheres. Langmuir 16:9015–9022CrossRefGoogle Scholar
  18. Liu ZP, Liang JB, Xu D, Lu J, Qian YT (2004) A facile chemical route to semiconductor metal sulfide nanocrystal superlattices. Chem Commun 23:2724CrossRefGoogle Scholar
  19. Lu Q, Gao F, Zhao D (2003) Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett 3:85–88CrossRefGoogle Scholar
  20. Mamedova NN, Kotov NA, Rogach AL, Studer J (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286CrossRefGoogle Scholar
  21. Ma Y, Qi L, Ma J, Cheng H, Shen W (2003) Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer. Langmuir 19:9079–9085CrossRefGoogle Scholar
  22. Meziani MJ, Sun YP (2003) Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. Am J Chem Soc 125:8015–8018CrossRefGoogle Scholar
  23. Pal B, Ikeda S, Ohtani B (2003) Photoinduced chemical reactions on natural single crystals and synthesized crystallites of mercury(II) sulfide in aqueous solution containing naturally occurringamino acids. Inorg Chem 42:1518–1524CrossRefGoogle Scholar
  24. Rees SG, Wassell DTH, Shellis RP, Embery G (2004) Effect of serum albumin on glycosaminoglycan inhibition of hydroxyapatite formation. Biomaterials 25:971–977CrossRefGoogle Scholar
  25. Shenton W, Pum D, Sleytr UB, Mann S (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587CrossRefGoogle Scholar
  26. Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862CrossRefGoogle Scholar
  27. Tran DTT, Beltran LMC, Kowalchuk CM, Trefiak NR, Taylor NJ, Corrigan JF (2002) Ternary nanoclusters of CuHgS, CuHgSe, and CuInS. Inorg Chem 41:5693–5698CrossRefGoogle Scholar
  28. Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124CrossRefGoogle Scholar
  29. Yang L, Shen QM, Zhou JG, Jiang K (2005) Biomimetic synthesis of CdS nanocrystals in the pepsin solution. Mater Lett 59:2889–2892CrossRefGoogle Scholar
  30. Yang L, Xing RM, Shen QM, Jiang K, Ye F, Wang JY, Ren QS (2006) Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution. J Phys Chem B 110:10534–10539CrossRefGoogle Scholar
  31. Zhang D, Qi L, Ma J, Cheng H (2002) Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Adv Mater 14:1499–1502CrossRefGoogle Scholar
  32. Zhang XJ, Xie Y, Zhao QR, Tian YP (2003) 1-D coordination polymer template approach to CdS and HgS aligned-nanowire bundles. New J Chem 27:827CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • De Zhi Qin
    • 1
    • 2
  • Xiao Ming Ma
    • 1
  • Lin Yang
    • 1
  • Li Zhang
    • 2
  • Zhong Jun Ma
    • 1
  • Jie Zhang
    • 1
  1. 1.College of Chemistry and Environmental ScienceHenan Normal UniversityXinxiangChina
  2. 2.College of Chemistry and Chemical EngineeringPingdingshan UniversityPindingshanChina

Personalised recommendations