Journal of Nanoparticle Research

, Volume 10, Issue 3, pp 499–506

Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol–gel silica glasses

  • Javier del-Castillo
  • V. D. Rodríguez
  • A. C. Yanes
  • J. Méndez-Ramos
Research Paper


Undoped and Er3+-doped glass–ceramics of composition (100−x)SiO2–xSnO2, with x = 5 or 10 and with 0.4 or 0.8 mol% of Er3+ ions, were synthesised by thermal treatment of precursor sol–gel glasses. Structural studies were developed by X-Ray Diffraction. Wide band gap SnO2 semiconductor quantum-dots embedded in the insulator SiO2 glass are obtained. The mean radius of the SnO2 nanocrystals, ranging from 2 to 3.2 nm, is comparable to the exciton Bohr radius. The luminescence properties have been analysed as a function of sample composition and thermal treatment. The results show that Er3+ ions are partially partitioned into the nanocrystalline phase. An efficient UV excitation of the Er3+ ions by energy transfer from the SnO2 nanocrystal host is observed. The Er3+ ions located in the SnO2 nanocrystals are selectively excited by this energy transfer mechanism. On the other hand, emission from the Er3+ ions remaining in the silica glassy phase is obtained by direct excitation of these ions.


Nanostructured materials sol–gel glass–ceramics Er3+ Luminescence Synthesis Thermal treatment 


  1. Brinker CJ, Sherer GW (1990) Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing. Academic Press, NYGoogle Scholar
  2. Brovelli S, Chiodini N, Lauria A, Meinardi F, Paleari A (2006a) Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica. Phys Rev B 73:73406–73410CrossRefGoogle Scholar
  3. Brovelli S, Chiodini N, Lauria A, Meinardi F, Paleari A (2006b) Kinetics of luminescence of interface defects and resonant Er3+ ions in nanostructured SnO2:SiO2. Solid State Commun 138:574–576CrossRefGoogle Scholar
  4. Brus EJ (1984) Electron-electron and electron-hole interactions in small semiconductor cristallites: the size dependence of the lowest excited electronic state. Chem Phys 80:4403–4409CrossRefGoogle Scholar
  5. Chiodini N, Paleari A, Di Martino D, Spinolo G (2002) SnO2 nanocrystals in SiO2: a wide-band-gap quantum-dot system. Appl Phys Lett 81:1702–1704CrossRefGoogle Scholar
  6. Dabboussi S, Elhouichet H, Ajlani H, Moadhen A, Oueslati M, Roger JA (2006) Excitation process and photoluminescence properties of Tb3+ and Eu3+ ions in SnO2 and in SnO2: porous silicon hosts. J Luminesc 121(2):507–516CrossRefGoogle Scholar
  7. del-Castillo J, Rodríguez VD, Yanes AC, Méndez-Ramos J, Torres ME (2005) Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass–ceramics prepared by the sol–gel method. Nanotechnology 16:300–303CrossRefGoogle Scholar
  8. del-Castillo J, Yanes AC, Méndez-Ramos J, Rodríguez VD Luminescence of nanostructured SnO2–SiO2 glass–ceramics prepared by sol–gel method. J Nanosci Nanotechnol (submitted)Google Scholar
  9. Gu F, Wang SF, Lu MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2004) Luminescent characteristics of Eu3+ in SnO2 nanoparticles. Opt Mat 25:59–64CrossRefGoogle Scholar
  10. Hayakawa T, Nogami M (2005) High luminescence quantum efficiency of Eu3+-doped SnO2–SiO2 glasses due to excitation energy transfer from nano-sized SnO2 crystals. Sci Technol Adv Mater 6:66–70CrossRefGoogle Scholar
  11. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  12. Lopez OA, Mckittrick J, Shea LE (1997) Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges. J Luminesc 71:1–11CrossRefGoogle Scholar
  13. Morais EA, Ribeiro SJL, Scalvi LVA, Santilli CV, Riggiero LO, Pulcinelli SH, Messaddeq Y (2002) Optical characteristics of Er3+–Yb3+ doped SnO2 xerogels. J Alloys Comp 344:217–220CrossRefGoogle Scholar
  14. Morais EA, Scalvi LVA, Geraldo V, Ribeiro SJL, Santilli CV (2003) Er rare-earth ion incorporation in sol–gel SnO2. Mat Res 6:445–449CrossRefGoogle Scholar
  15. Nogami M, Enomoto T, Hayakawa T (2002) Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass. J Luminesc 97:147–152CrossRefGoogle Scholar
  16. Patra A, Sominska E, Ramesh S, Kolypin Y, Zhong Z, Minti H, Reisfeld R, Gedaken A (1999) Sonochemical preparation and characterization of Eu2O3 and Tb2O3 doped in and coated on silica and alumina nanoparticles. J Phys Chem B 103:3361–3365CrossRefGoogle Scholar
  17. Yanes AC, del-Castillo J, Torres ME, Peraza J, Rodríguez VD, Méndez-Ramos J (2004) Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots. Appl Phys Lett 85(12):2343–2345CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Javier del-Castillo
    • 1
  • V. D. Rodríguez
    • 2
  • A. C. Yanes
    • 1
  • J. Méndez-Ramos
    • 2
  1. 1.Departamento Física Básica Universidad de La LagunaLa Laguna, TenerifeSpain
  2. 2.Departamento Física Fundamental y Experimental, Electrónica y SistemasUniversidad de La LagunaLa Laguna, TenerifeSpain

Personalised recommendations