Journal of Nanoparticle Research

, Volume 10, Issue 3, pp 415–427

Grafting of PMMA brushes on titania nanoparticulate surface via surface-initiated conventional radical and “controlled” radical polymerization (ATRP)

  • G. K. Raghuraman
  • Jürgen Rühe
  • Raghavachari Dhamodharan
Research Paper

Abstract

Stable dispersion of titania nanoparticles in organic solvents are obtained by grafting poly(methyl methacrylate) layer on to the surface. Titania nanoparticles are synthesized through the hydrolysis of titanium (IV) isopropoxide. The average size of the titania particles is found to be 15 ± 2 nm. The polymer layer was introduced onto the surface by immobilizing the initiating moiety. Azo initiator moiety required for surface-initiated conventional free radical polymerization and a tertiary bromide initiator moiety required for ATRP are attached covalently to the titania nanoparticulate surface through the surface hydroxyl groups. The “encapsulation” of PMMA layer results in the steric stabilization of the titania nanoparticles. Another important finding is that it is possible to grow polymer layer in a controlled fashion.

Keywords

Titania nanoparticles Surface-initiated polymerization ATRP Hydridosilane Polymer brushes Polymer encapsulation Composite nanomaterial 

References

  1. Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91(16):4305–4310CrossRefGoogle Scholar
  2. Ayllon JA, Peiro AM, Saadonn L, Vigil E, Domenech X, Peral J (2000) Preparation of anatase powders from fluorine-complexed titanium (IV) aqueous solution using microwave irradiation. J Mater Chem 10(8):1911–1914CrossRefGoogle Scholar
  3. Bedja I, Kamat PV, Lapin AG, Hotchandani S (1997) Photosensitization of nanocrystalline ZnO films by bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II). Langmuir 13(8):2398–2403CrossRefGoogle Scholar
  4. Ben Ouada H, Hommel H, Legrand AP, Balard H, Papirer E (1988) Organization of the layers of polyethylene oxide grafted with different densities on silica. J Colloid Interface Sci 122(2):441–449CrossRefGoogle Scholar
  5. Bönneman H, Richards RM (2001) Nanoscopic metal particles––synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480CrossRefGoogle Scholar
  6. Boven G, Oosterling MLCM, Challa G, Schouten AJ (1990) Grafting kinetics of poly(methyl methacrylate) on microparticulate silica. Polymer 31(12):2377–2383CrossRefGoogle Scholar
  7. Bridger K, Vincent B (1980) The terminal grafting of poly(ethylene oxide) chains to silica surfaces. Eur Polym J 16(10):1017–1021CrossRefGoogle Scholar
  8. Carlier E, Guyot A, Revillion A (1992) Functional polymers supported on porous silica. II. Radical polymerization of vinylbenzyl chloride from grafted precursors. React Polym 16(2):115–124CrossRefGoogle Scholar
  9. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68CrossRefGoogle Scholar
  10. Hamann R, Laible R (1973) Polyreaktionen an pigmentoberflächen. VI. Mitteilung: radikalisch initiierte polyreaktionen an SiO2-oberflächen. Angew Makromol Chem 48:97–133Google Scholar
  11. Hayashi H, Torii K (2002). Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions. J Mater Chem 12(12):3671–3676CrossRefGoogle Scholar
  12. Karch J, Birringer R, Gleiter H (1987) Ceramics ductile at low temperature. Nature 330:556–558CrossRefGoogle Scholar
  13. Kavan L, Kratochvilova IK, Gratzel M (1995) Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J Electroanal Chem 394(1–2):93–102CrossRefGoogle Scholar
  14. Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes. J Am Chem Soc 100(19):5985–5992CrossRefGoogle Scholar
  15. Kumbhar A, Chumanov G (2005) Synthesis of iron(III)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant. J Nanopart Res 7(4–5):489–498CrossRefGoogle Scholar
  16. Matsuno R, Yamamoto K, Otsuka H, Takahara A (2003) Polystyrene-grafted magnetite nanoparticles prepared through surface-initiated nitroxyl-mediated radical polymerization. Chem Mat 15(1):3–5CrossRefGoogle Scholar
  17. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353(6346):737–740CrossRefGoogle Scholar
  18. Prucker O, Rühe J (1998) Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31:592–601CrossRefGoogle Scholar
  19. Raghuraman GK, Dhamodharan R (2006) Surface-initiated atom transfer radical polymerization of methyl methacrylate from magnetite nanoparticles at ambient temperature. J Nanosci Nanotech 6(7):2018–2024CrossRefGoogle Scholar
  20. Ramakrishnan A, Dhamodharan R (2003) Facile synthesis of ABC and CBABC multiblock copolymers of styrene, tert-butyl acrylate, and methyl methacrylate via room temperature ATRP of MMA. Macromolecules 36:1039–1046CrossRefGoogle Scholar
  21. Ramakrishnan A, Dhamodharan R, Rühe J (2002) Controlled growth of PMMA brushes on silicon surface at room temperature. Macromol Rapid Commun 23:612–616CrossRefGoogle Scholar
  22. Ramakrishnan A, Dhamodharan R, Rühe J (2006) Growth of poly(methyl methacrylate) brushes on silicon surfaces by atom transfer radical polymerization. J Poly Sci Part A 44:1758–1769CrossRefGoogle Scholar
  23. Rao MV, Rajeshwar K, Vernekar VRP, DuBow J (1980) Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions. J Phys Chem 84(15):1987–1991CrossRefGoogle Scholar
  24. Schmidt R, Zhao T, Green JB, Dyer DJ (2002) Photoinitiated polymerization of styrene from self-assembled monolayers on gold. Langmuir 18(4):1281–1287CrossRefGoogle Scholar
  25. Tsubokawa N, Hosoya M, Yanodori K, Sone Y (1990) Grafting onto carbon-black reaction of functional-groups on carbon-black with acyl chloride-capped polymers. J Macromol Sci Chem A27:445–457Google Scholar
  26. Tsubokawa N, Yoshihara T, Sone Y (1992) Grafting of polymers onto carbon whisker by anionic graft polymerization of vinyl monomers using metallized aromatic rings and/or phenoxy lithium groups on the surface as initiator. J Polym Sci Part A: Polym Chem 30(4):561–567CrossRefGoogle Scholar
  27. von Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well defined hybrid nanostructures and for understanding the chemistry of controlled/living radical polymerizations from surfaces. J Am Chem Soc 123:7497–7505CrossRefGoogle Scholar
  28. Xiaowu F, Lijun L, Phillip BM (2006) Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: a new route toward polymer–matrix nanocomposites. Comp Sci Tech 66:1198–1204CrossRefGoogle Scholar
  29. Yang S, Lian G (2005) Preparation of titanium dioxide nanocrystallite with high photocatalytic activities. J Am Ceram Soc 88:968–970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • G. K. Raghuraman
    • 1
    • 2
  • Jürgen Rühe
    • 2
  • Raghavachari Dhamodharan
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology, MadrasChennaiIndia
  2. 2.Institute for Microsystems and Technology (IMTEK)University of FreiburgFreiburgGermany

Personalised recommendations