Journal of Nanoparticle Research

, Volume 10, Issue 2, pp 369–375

Gadolinium doped Ceria nanocrystals synthesized from mesoporous silica

  • Emma Rossinyol
  • Eva Pellicer
  • Anna Prim
  • Sònia Estradé
  • Jordi Arbiol
  • Francesca Peiró
  • Albert Cornet
  • Joan Ramon Morante
Brief Communication

Abstract

Highly crystalline and thermally stable gadolinium doped ceria (GDC) particles have been synthesized by hard template route for the first time. This oxide is being recognized as an intermediate temperature (500–700 °C) electrolyte material for applications in solid-oxide fuel cells. The GDC particles show high crystallinity and nanometric size (2.83 ± 0.05 nm in diameter) and Raman analyses confirm the formation of the solid solution instead of a CeO2 and Gd2O3 mixture. EDX and EELS studies indicate a stoichiometry coherent with the Gd0.2Ce0.8O1.9 phase. The synthesized nanometric powder is expected to be used in solid oxide fuel cells as well as in the catalytic treatment of automobile exhaust fumes.

Keywords

Cerium Electron microscopy Fuel cell Gadolinium Mesoporous materials and synthesis design 

Graphical abstract

References

  1. Arbiol J, Cabot A, Morante JR, Chen F, Liu M (2002) Distributions of noble metal Pd and Pt in mesoporous silica. Appl Phys Lett 81:3449CrossRefGoogle Scholar
  2. Arbiol J, Rossinyol E, Cabot A, Peiró F, Cornet A, Morante JR, Chen F, Liu M (2004) Noble metal nanostructures synthesized inside mesoporous nanotemplate pores. Electrochem Solid State Lett 7:J17CrossRefGoogle Scholar
  3. Fukuoka A, Sakamoto Y, Guan S, Inagaki S, Sugimoto N, Fukushima Y, Hirahara K, Iijima S, Ichikawa M (2001) Novel templating synthesis of necklace-shaped mono- and bimetallic nanowires in hybrid organic-inorganic mesoporous material. J Am Chem Soc 123:3373CrossRefGoogle Scholar
  4. Garcia-Murillo A, Le Luyer C, Garapon C, Dujardin C, Bernstein E, Pedrini C, Mugnier J (2002) Optical properties of europium-doped Gd2O3 waveguiding thin films prepared by the sol-gel method. Opt Mater 19:161CrossRefGoogle Scholar
  5. Gödickemeier M, Sasaki K, Gauckler LJ, Riess I (1997) Electrochemical characteristics of cathodes in solid oxide fuel cells based on ceria electrolytes. J Electrochem Soc 144:1635CrossRefGoogle Scholar
  6. Godinho MJ, Gonçalves RF, Santos LPS, Varela JA, Longo E, Leite ER (2007) Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9-δ powder. Mater Lett 61:1904CrossRefGoogle Scholar
  7. Han YJ, Kim JM, Stucky GD (2000) Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem Mater 12:2068CrossRefGoogle Scholar
  8. Higashi K, Sonoda K, Ono H, Sameshima S, Hirata Y (1999) Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method. J Mater Res 14(3):957CrossRefGoogle Scholar
  9. Huang K, Feng M, Goodenough JB (1998) Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. J Am Ceram Soc 81(2):357Google Scholar
  10. Matta J, Courcot K, Abi-Aad E, Boukays A (2002) Identification of vanadium oxide species and trapped single electrons in interaction with the CeVO4 phase in vanadium-cerium oxide systems. 51V MAS NMR, EPR, Raman, and thermal analysis studies. Chem Mater 14:4118CrossRefGoogle Scholar
  11. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563CrossRefGoogle Scholar
  12. Nakagawa T, Osuki T, Yamamoto TA, Kitauji Y, Kano M, Katsura M, Emura S (2001) Study on local structure around Ce and Gd atoms in CeO2-Gd2O3 binary system. J Synchrotron Rad 8:740CrossRefGoogle Scholar
  13. Navarro L, Marques F, Frade J (1997) n-Type conductivity in gadolinia-doped ceria. J Electrochem Soc 144:267CrossRefGoogle Scholar
  14. Oishi N, Atkinson A, Brandon NP, Kilner JA, Steele BCH (2005) Fabrication of an anode-supported gadolinium-doped ceria solid oxide fuel cell and its operation at 550 ºC. J Am Ceram Soc 88:1394Google Scholar
  15. Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernández-Ramírez F, Peiró F, Cornet A, Morante JR, Solovyov LA, Tian B, Bo T, Zhao D (2007) Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications. Accepted at Adv Func Mat doi: 10.1002/adfm.200600722Google Scholar
  16. Rossinyol E, Arbiol J, Peiró F, Cornet A, Morante JR, Tian B, Bo T, Zhao D (2005) Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens Act B 109:57CrossRefGoogle Scholar
  17. Ryoo R, Kim JM, Ko CH, Shin CH (1996) Disordered molecular sieve with branched mesoporous channel network. J Phys Chem 100:17718CrossRefGoogle Scholar
  18. Sato H, Yokoyama C (2004) Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode. Solid State Ionics 175:51Google Scholar
  19. Schouler EJL, Kleitz M (1987) Electrocatalysis and inductive effects at the gas/platinum stabilized zirconia interface. J Electrochem Soc 134:1045CrossRefGoogle Scholar
  20. Tian B, Liu X, Solovyov LA, Liu Z, Yang H, Zhang Z, Xie S, Zhang F, Tu B, Yu C, Terasaki O, Zhao D (2004) Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J Am Chem Soc 126:865CrossRefGoogle Scholar
  21. Tok AIY, Luo LH, Boey FYC (2004) Carbonate co-precipitation of Gd2O3-doped CeO2 solid solution nanoparticles. Mat Sci Eng A 383:229CrossRefGoogle Scholar
  22. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng 38(4):439CrossRefGoogle Scholar
  23. Tsai T, Barnett SA (1998) Effect of mixed-conducting interfacial layers on solid oxide fuel cell anode performance. J Electrochem Soc 145:1696CrossRefGoogle Scholar
  24. Watanabe M, Uchida H, Yoshida M (1997) Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of ceria-based anodes in solid oxide fuel cells. J Electrochem Soc 144:1739CrossRefGoogle Scholar
  25. Wandekar RV, Ali (Basu) M, Wani BN, Bharadwaj SR (2006) Physicochemical studies of NiO-GDC composites. Mat Chem Phys 99:289Google Scholar
  26. Yamashita K, Ramanujachary KV, Greenblatt M (1995) Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics. Solid State Ionics 81:60CrossRefGoogle Scholar
  27. Yang H, Shi Q, Tian B, Lu Q, Gao F, Xie S, Fan J, Yu C, Tu B, Zhao D (2003) One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc 125:4724CrossRefGoogle Scholar
  28. Yu C, Tian B, Zhao D (2003) Recent advances in the synthesis of non-siliceous mesoporous materials. Curr Opin Solid State Mater Sci 7:191CrossRefGoogle Scholar
  29. Zhang Z, Dai S, Blom DA, Shen J (2002) Synthesis of ordered metallic nanowires inside ordered mesoporous materials through electroless deposition. Chem Mater 14:965CrossRefGoogle Scholar
  30. Zhao D, Feng J, Huo Q, Melosh N, Frederickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548CrossRefGoogle Scholar
  31. Zhu K, He H, Xie S, Zhang X, Zhou W, Jin S, Yue B (2003) Crystalline WO3 nanowires synthesized by templating method. Chem Phys Lett 377:317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Emma Rossinyol
    • 1
    • 2
  • Eva Pellicer
    • 2
  • Anna Prim
    • 2
  • Sònia Estradé
    • 2
  • Jordi Arbiol
    • 2
    • 3
  • Francesca Peiró
    • 2
  • Albert Cornet
    • 2
  • Joan Ramon Morante
    • 2
  1. 1.Microscopy Service, Faculty of SciencesUniversitat Autònoma de BarcelonaCerdanyola del Valles, BarcelonaSpain
  2. 2.EME/CeRMAE/IN2UB, Departament d’ElectrònicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.TEM-MAT, Serveis CientificotècnicsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations