Advertisement

Journal of Nanoparticle Research

, Volume 10, Issue 2, pp 307–312 | Cite as

Reductive hydrothermal synthesis of La(OH)3:Tb3+ nanorods as a new green emitting phosphor

  • Hongliang Zhu
  • Deren Yang
  • Hong Yang
  • Luming Zhu
  • Dongsheng Li
  • Dalai Jin
  • Kuihong Yao
Research Paper

Abstract

A reductive hydrothermal process with use of hydrazine hydrate as a protecting agent is proposed to synthesize La(OH)3:Tb3+ (Tb mol% = 0, 1, 5, 10, and 20) nanorods. The oxidation of Tb3+−Tb4+ was effectively prevented in the presence of hydrazine hydrate; hence the La(OH)3:Tb3+ nanorods exhibited much stronger green photoluminescence than the product prepared by the normal hydrothermal process. X-ray diffraction and transmission electron microscopy were employed to characterize the products, the results of which revealed that all the products were one-dimensional rod-like nanostructures of hexagonal structure (∼20 nm in diameter). The reductive hydrothermal process is desirable for the synthesis of other efficient Tb3+ doped nanophosphers.

Keywords

Nanomaterials Nanophosphors Nanostructures Photoluminescence Reductive hydrothermal method Terbium 

Notes

Acknowledgment

This work was supported by the Open Foundation Project of the State Key Lab of Silicon Materials (No. 200601).

References

  1. Chander H (2005) Development of nanophosphors–a review. Mater Sci Eng Rep 49:113–155CrossRefGoogle Scholar
  2. Fang Y, Xu A, You L, Song R, Yu J, Zhang H, Li Q, Liu H (2003) Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Adv Funct Mater 13:955–960CrossRefGoogle Scholar
  3. Fu Z, Zhou S, Zhang S (2005) Study on optical properties of rare-earth ions in nanocrystalline monoclinic SrAl2O4: Ln (Ln = Ce3+, Pr3+, Tb3+). J Phys Chem B 109:14396–14400CrossRefGoogle Scholar
  4. Gao P, Ying C, Wang S, Ye L, Guo Q, Xie Y (2006) Low temperature hydrothermal synthesis of ZnO nanodisk arrays utilizing self-assembly of surfactant molecules at solid–liquid interfaces. J Nanopart Res 8:131–136CrossRefGoogle Scholar
  5. Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103CrossRefGoogle Scholar
  6. Li X, Liu H, Wang J, Cui H, Yang S, Boughton IR (2005) Solvothermal synthesis and luminescent properties of YAG:Tb nano-sized phosphors. J Phys Chem Solids 66:201–205CrossRefGoogle Scholar
  7. Li Z, Zeng J, Chen C, Li Y (2006) Hydrothermal synthesis and luminescent properties of YBO3:Tb3+ uniform ultrafine phosphor. J Cryst Growth 286:487–493CrossRefGoogle Scholar
  8. Neumann A, Walter D (2006) The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermochim Acta 445:200–204CrossRefGoogle Scholar
  9. Niu J, Hua R, Li W, Li M, Yu T (2006) Electroluminescent properties of a device based on terbium-doped ZnS nanocrystals. J Phys D Appl Phys 39:2357–2360CrossRefGoogle Scholar
  10. Ronda CR, Jüstel T, Nikol H (1998) Rare earth phosphors: fundamentals and applications. J Alloy Compd 275–277:669–676CrossRefGoogle Scholar
  11. Rosa E. De la, Díaz-Torres LA, Salas P, Arredondo A, Montoya JA, Angeles C, Rodríguez RA (2005) Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol–gel method. Opt Mater 27:1793–1799CrossRefGoogle Scholar
  12. Tang B, Ge J, Zhuo L (2004) The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent. Nanotechnology 15:1749–1751CrossRefGoogle Scholar
  13. Toda K (2006) Recent research and development of VUV phosphors for a mercury-free lamp. J Alloy Compd 408–412:665–668CrossRefGoogle Scholar
  14. Wang Z, Quan Z, Lin J, Fang J (2005) Polyol-mediated synthesis and photoluminescent properties of Ce3+ and/or Tb3+-Doped LaPO4 nanoparticles. J Nanosci Nanotechnol 5:1532–1536CrossRefGoogle Scholar
  15. Wang Z, Li G, Quan Z, Kong D, Liu X, Yu M, Lin J (2007) Nanostructured CaWO4, CaWO4:Pb2+ and CaWO4:Tb3+ particles: polyol-mediated synthesis and luminescent properties. J Nanosci Nanotechnol 7:602–609Google Scholar
  16. Xia G, Zhou S, Zhang J, Wang S, Xu J (2006) Solution combustion synthesis, structure and luminescence of Y3Al5O12:Tb3+ phosphors. J Alloy Compd 421:294–297CrossRefGoogle Scholar
  17. Yu L, Song H, Liu Z, Yang L, Lu S, Zheng Z (2005) Electronic transition and energy transfer processes in LaPO4-Ce3+/Tb3+ nanowires. J Phys Chem B 109:11450–11455CrossRefGoogle Scholar
  18. Yu L, Song H, Liu Z, Yang L, Lu S, Zheng Z (2005) Remarkable improvement of brightness for the green emissions in Ce3+ and Tb3+ co-activated LaPO4 nanowires. Solid State Commun 134:753–757CrossRefGoogle Scholar
  19. Yu M, Wang H, Lin CK, Li GZ, Lin J (2006) Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core–shell structure. Nanotechnology 17:3245–3252CrossRefGoogle Scholar
  20. Zhang H, Liu H, Cao X, Li S, Sun C (2003) Preparation and properties of the aluminum-substituted α-Ni(OH)2. Mater Chem Phys 79:37–42CrossRefGoogle Scholar
  21. Zhao Q, Li Z, Wu C, Bai X, Xie Y (2006) Facile synthesis and optical property of SnO2 flower-like architectures. J Nanopart Res 8:1065–1069CrossRefGoogle Scholar
  22. Zou G, Liu R, Chen W, Xu Z (2007) Preparation and characterization of lamellar-like Mg(OH)2 nanostructures via natural oxidation of Mg metal in formamide/water mixture. Mater Res Bull 42:1153–1158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hongliang Zhu
    • 1
    • 2
  • Deren Yang
    • 2
  • Hong Yang
    • 1
  • Luming Zhu
    • 1
  • Dongsheng Li
    • 2
  • Dalai Jin
    • 1
  • Kuihong Yao
    • 1
  1. 1.Center of Materials EngineeringZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.State Key Lab of Silicon MaterialsZhejiang UniversityHangzhouChina

Personalised recommendations