Advertisement

Journal of Nanoparticle Research

, Volume 10, Issue 2, pp 263–276 | Cite as

Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice

  • Bing Wang
  • Weiyue FengEmail author
  • Meng Wang
  • Tiancheng Wang
  • Yiqun Gu
  • Motao Zhu
  • Hong Ouyang
  • Junwen Shi
  • Fang Zhang
  • Yuliang Zhao
  • Zhifang Chai
  • Haifang Wang
  • Jing Wang
Research Paper

Abstract

In this work, the acute oral toxicity of 20- and 120-nm ZnO powder at doses of 1-, 2-, 3-, 4-, 5-g/kg body weight was evaluated referred to the OECD guidelines for testing of chemicals. As the results, both 20- and 120-nm ZnO belong to non-toxic chemicals according to the Globally Harmonized Classification System (GHS) for the classification of chemicals. The distribution determination showed that Zn was mainly retained in the bone, kidney and pancreas after 20- and 120-nm ZnO administration. However, the results of blood measurement suggest that the increase in blood viscosity could be induced by low and median dose of 20-nm ZnO but high dose of 120-nm ZnO. The pathological examination showed that the 120-nm ZnO treated mice had dose–effect pathological damages in stomach, liver, heart and spleen, whereas, 20-nm ZnO displayed negative dose–effect damages in liver, spleen and pancreas. Therefore, we conclude that the liver, spleen, heart, pancreas and bone are the target organs for 20- and 120-nm ZnO oral exposure. More attention should be paid on the potential toxicity induced by low dose of 20-nm ZnO oral exposure.

Keywords

Acute oral toxicity Nano-meter zinc oxide powder Submicro-meter zinc oxide powder Mice Toxicology Health effects Medicine 

Notes

Acknowledgements

The authors are grateful to the foundations of National Basic Research Program of China (2006CB705605), National Natural Science Foundation of China (10490180, 10675139) and the Chinese Academy of Sciences (Grant No. KJCX2-SW-N01) and the special foundation for excellent doctoral dissertation.

References

  1. Akins PT, Glenn S, Nemeth PM, Derdeyn CP (1996) Carotid artery thrombus associated with severe iron-deficiency anemia and thrombocytosis. Stroke 27:1002–1005Google Scholar
  2. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Non-invasive imaging of quantum dots in mice. Bioconjugate Chem 15:79–86CrossRefGoogle Scholar
  3. Banerjee S, Dan A, Chakravorty D (2002) Review synthesis of conducting nanowires. J Mater Sci 37:4261–4271CrossRefGoogle Scholar
  4. Cagle DW, Kenmnel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci 96:5182–5187CrossRefGoogle Scholar
  5. Carpenter JW, Andrews GA, Beyer WN (2004) Zinc toxicosis in a free-flying trumpeter swan (cygnus buccinator). J Wildlife Dis 40(4):769–774Google Scholar
  6. Chen RH, Qin R, Wang FD, Wang JP, Lu TX (1992) The effects of oral excess zinc on the zinc level and morphology of tissues. Zhonghua Yixue Zazhi 72(7):391–393Google Scholar
  7. Ding H, Peng R, Chen J (1998) Effects of high dietary zinc on liver function, hepatic drug metabolism enzymes and membrane fluidity in mice. Wei Sheng Yan Jiu 27(3):180–182Google Scholar
  8. Donaldson K, Stone V (2003) Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanit`a 39(3):405–410Google Scholar
  9. Gatlin III DM, Phillips HF, Torrans EL (1989) Effects of various levels of dietary copper and zinc on channel catfish. Aquaculture 76:127–134CrossRefGoogle Scholar
  10. Gibaud S, Demoy M., Andreux JP, Weingarten C, Gouritin B, Couvreur P (1996) Cells involved in the capture of nanoparticles in hematopoietic organs. J Pharm Sci 85(9):944–950CrossRefGoogle Scholar
  11. Grodzki K (2000) Establishing a globally harmonised hazard classification and labelling system for dangerous substances and preparations. Tutb Newsletter 14:17–23Google Scholar
  12. Han CY, Bian JC, Yang XX, Wang L, Zhang HF, Xiang YZ, Shi BE (2001) The effects of Zn on blood viscosity and Prothormbin time. Studies of Trace Elements and Health 18(1):13–14Google Scholar
  13. Hein MS (2003) Copper deficiency anemia and nephrosis in zinc-toxicity: a case report. S D J Med 56(4):143–147Google Scholar
  14. Hoffman HN, Phyliky RL, Fleming CR (1988) Zinc-induced cop-per deficiency. Gastroenterology 94(2):508–512Google Scholar
  15. Kannel WB, Wolf PA, Castelli WP, D’Agostino RB (1987) Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 258(9):1183–1186CrossRefGoogle Scholar
  16. Kellerman J (1995) In: Blood test. Signet Book, Reprint edition, Chicago, USAGoogle Scholar
  17. Kodama H, Fukuda J, Karube H, Matsui T, Shimizu Y, Tanaka T (1996) Status of the coagulation and fibrinolytic system in ovarian hyperstimulation syndrome. Fertil Steril 66(3):417–424Google Scholar
  18. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134CrossRefGoogle Scholar
  19. Latimer KS, Jain AV, Inglesby HB, Clarkson WD, Johnson GB (1989) Zinc-induced hemolytic anemia caused by ingestion of pennies by a pup. J Am Vet Med Assoc 195(1):77–80Google Scholar
  20. Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ (2002) Field emission from well-aligned zinc oxide nanowires grown at a low temperature. Appl Phys Lett 81(19):3648–3650CrossRefGoogle Scholar
  21. Lee DD, Lee DS (2001) Environmental gas sensors. IEEE Sens J 1(3):214–224CrossRefGoogle Scholar
  22. Lee TH, Goldman L (1986) Serum enzyme assays in the diagnosis of acute myocardial infarction. Ann Intern Med 105:221–223Google Scholar
  23. Llobet JM, Domingo JL, Colomina MT, Mayayo E, Corbella J (1988) Subchronic oral toxicity of zinc in rats. Bull Environ Contam Toxicol 41:36–43CrossRefGoogle Scholar
  24. Long T, Saleh N, Tilton RD, Lowry GV, Veronest B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352CrossRefGoogle Scholar
  25. Nitsche EK (2004) Erythrocytosis in dogs and cats: diagnosis and management. Compend. Cont Educ Pract Vet 26:104–118Google Scholar
  26. Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence and lung injury. Environ Health Perspect 102:173–179CrossRefGoogle Scholar
  27. Oberdörster G, Finkelstein JN, Johnston C (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:5–74Google Scholar
  28. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 6:2(8)Google Scholar
  29. OECD (2001) OECD Guidelines for Testing of Chemicals. No 425: Acute Oral Toxicity-UP-and-Down Procedure. Organisation for Economic Co-operation and Development, Paris, Adopted: 17th DecemberGoogle Scholar
  30. Pekkanen J, Peters A, Hoek G, Tiittanen P, Brunekreef B, de Hartog J, Heinrich J, Ibald-Mulli A, Kreyling WG, Lanki T, Timonen KL, Vanninen E (2002) Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air [ultra] study. Circulation 106:933–938CrossRefGoogle Scholar
  31. Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J (2001) Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Resp J 17(3):428–435CrossRefGoogle Scholar
  32. Peters A, Doring A, Wichmann HE, Koenig W (1997a) Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 349:1582–1587CrossRefGoogle Scholar
  33. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997b) Respiratory effects are associated with the number of ultrafine particles. Am Respir Crit Care Med 155:1376–1383Google Scholar
  34. Qiang JL (2001) The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci 180:308–314CrossRefGoogle Scholar
  35. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffman D (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hamster embryo fibroblasts. Environ Health Perspect 110:797–800CrossRefGoogle Scholar
  36. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343(24):1742–1749CrossRefGoogle Scholar
  37. Sandoval M, Henry PR, Littell RC, Miles RD, Butcher GD, Ammerman DB (1999) Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. J Anim Sci 77:1788–1799Google Scholar
  38. SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS (SCCNFP.) (2003) Evaluation and opinion on: Zinc oxide. 24th plenary meeting, BrusselsGoogle Scholar
  39. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333Google Scholar
  40. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312CrossRefGoogle Scholar
  41. The Royal Society & the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. 29 JulyGoogle Scholar
  42. Torrance AG, Fulton RB Jr (1987) Zinc-induced hemolytic anemia in a dog. J Am Vet Med Assoc 191(4):443–444Google Scholar
  43. Von Klot S, Wolke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, Kreyling WG, Wichmann HE, Peters A (2002) Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 20:691–702CrossRefGoogle Scholar
  44. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161(2):115–123CrossRefGoogle Scholar
  45. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236CrossRefGoogle Scholar
  46. Wichmann HE, Cyrys J, Stölzel M, Spix C, Wittmaack K, Tuch T, Pitz M, Peters A, Wölke G, Menzel N, Hietel B, Schulz F, Heinrich J, Kreyling WG, Heyder J (2002) Sources and elemental composition of ambient particles in Erfurt, Germany. In: Wichmann HE, Schlipkoter HW, Fulgraff G (eds) Fortschritte in der Umweltmedizin. Ecomed Publishers, Erfurt, GermanyGoogle Scholar
  47. Wittmaack K (2006) In Search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 114:187–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Bing Wang
    • 1
    • 2
  • Weiyue Feng
    • 1
    Email author
  • Meng Wang
    • 1
    • 2
  • Tiancheng Wang
    • 3
  • Yiqun Gu
    • 4
  • Motao Zhu
    • 1
    • 2
  • Hong Ouyang
    • 1
  • Junwen Shi
    • 1
    • 2
  • Fang Zhang
    • 2
  • Yuliang Zhao
    • 1
  • Zhifang Chai
    • 1
    • 5
    • 6
  • Haifang Wang
    • 7
  • Jing Wang
    • 7
  1. 1.Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials and Nanosafety and Key Laboratory of Nuclear Analytical TechniquesInstitute of High Energy Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Clinical Laboratory of Medicine3rd Hospital of Peking UniversityBeijingChina
  4. 4.Maternity Hospital of Haidian DistrictBeijingChina
  5. 5.Institute of Nanochemistry and NanobiologyShanghai UniversityShanghaiChina
  6. 6.Institute of Nuclear TechnologyShenzhen UniversityShenzhenChina
  7. 7.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations