Journal of Nanoparticle Research

, Volume 10, Issue 2, pp 357–363 | Cite as

Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells

  • Daobao Chu
  • Ximei Yuan
  • Guoxu Qin
  • Mai Xu
  • Peng Zheng
  • Jia Lu
  • Longwu Zha
Brief Communication


In this paper, we have demonstrated that carbon-doped nanostructured TiO2 (CD ns-TiO2) films could be prepared simply and cheaply with oxalic acid and tetrabutylammonium bromide (Bu4N·Br) as the carbon sources. The surface morphology of the films was a multiple-porous network structure.The average size of nanoparticle was about 40 nm. Carbon doped into substitutional sites of TiO2 has also proven to be indispensable for band-gap narrowing and photovoltaic effect. Carbon doping lowered the band gap of n-TiO2 to 1.98, 1.64, and 1.26 eV. The CD ns-TiO2 film was first used as photoanode for solar cells, exhibiting high photocurrent densities (l.34 mA/cm2) and yielding an overall conversion efficiency (η) of 4.42 %.


Carbon-doped Titanium dioxide Solar cells Photovoltaic effect Sol–gel process Nanocomposites Energy conversion 


  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  2. Barborini E, Conti AM, Kholmanov I, Piseri P, Podesta A, Milani P, Cepek C, Sakho O, Macovez R, Sancrotti M (2005) Nanostructured TiO2 films with 2 eV optical gap. Adv Mater 17:1842–1846CrossRefGoogle Scholar
  3. Chen CY, Wu SJ, Wu CJ, Chen JG, Ho KC (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45:5822–5825CrossRefGoogle Scholar
  4. Chu DB, Feng DX, Zhang JH, Lin HS, Hu WL, Tian ZW (2005) Novel system of direct methanol fuel cell anode catalysts: nanoTiO2-CNT-PtNi complex catalysts. Acta Chim Sinica 63:2027–2031Google Scholar
  5. Cong Y, Chen F, Zhang J, Anpo M (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35:800–801CrossRefGoogle Scholar
  6. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem Rev 102:3615–3640CrossRefGoogle Scholar
  7. Fujishima A (2003) Comment on "efficient photochemical water splitting by a chemically modified n-TiO2" (I). Science 301:1673aCrossRefGoogle Scholar
  8. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  9. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  10. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153CrossRefGoogle Scholar
  11. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14CrossRefGoogle Scholar
  12. Gole JL, Stout JD, Burda C, Lou Y, Chen X (2004) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240CrossRefGoogle Scholar
  13. Hägglund C, Grätzel M, Kasemo B (2003) Comment on "efficient photochemical water splitting by a chemically modified n-TiO2" (II). Science 301:1673bCrossRefGoogle Scholar
  14. Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32:772–773CrossRefGoogle Scholar
  15. Kamisaka H, Adchi T, Yamashita K (2005) Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J Chem Phys 123:084704CrossRefGoogle Scholar
  16. Khan SUM, Al-Shahry M, Ingler Jr WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245CrossRefGoogle Scholar
  17. Kisch H, Zang L, Lange C, Maier Wf, Antonius C, Meissner D (1998) Modified, amorphous titania-A hybrid semiconductor for detoxification and current generation by visible light. Angew Chem Int Ed 37:3034–3036CrossRefGoogle Scholar
  18. Lackner KS (2003) Comment on “efficient photochemical water splitting by a chemically modified n-TiO2” (III). Science 301:1673cCrossRefGoogle Scholar
  19. Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF (2001) Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B 32:215–227CrossRefGoogle Scholar
  20. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys 40:L561–L563CrossRefGoogle Scholar
  21. Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H (2005) Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B 109:16579–16586CrossRefGoogle Scholar
  22. Nie X, Sohlberg K (2004) Materials Research Society Proceedings on Materials and Techanology for Hydrogen Economy, vol 801, p 205Google Scholar
  23. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  24. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365CrossRefGoogle Scholar
  25. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal B 265:115–121CrossRefGoogle Scholar
  26. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano lett 6:24–28CrossRefGoogle Scholar
  27. Peter LM, Wijayantha KGU, Reily DJ, Waggett JP (2003) Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J Phys Chem B 107:8378–8381CrossRefGoogle Scholar
  28. Reddy KM, Baruwati B, Jayalakshmi M, Rao MM, Manorama SV (2005) S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study. J Solid State Chem 178:3352–3358CrossRefGoogle Scholar
  29. Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J Appl Phys 72:3072–3079CrossRefGoogle Scholar
  30. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911CrossRefGoogle Scholar
  31. Sakthivel S, Janezarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387CrossRefGoogle Scholar
  32. Xu CK, Killmeyer R, Gray ML, Khan SUM (2006a) Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Appl Catal B 64:312–317CrossRefGoogle Scholar
  33. Xu CK, Killmeyer R, Gray ML, Khan SUM (2006b) Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting. Electrochem Commun 8:1650–1654CrossRefGoogle Scholar
  34. Zhou XF, Chu DB, Lin CJ (2002) Anodic dissolution of spongy titanium in ethanol solution for preparation of nano-sized TiO2 powder. Electrochim Acta 47:2769–2773CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Daobao Chu
    • 1
    • 2
  • Ximei Yuan
    • 1
  • Guoxu Qin
    • 1
  • Mai Xu
    • 1
  • Peng Zheng
    • 1
  • Jia Lu
    • 1
  • Longwu Zha
    • 1
  1. 1.College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuP.R. China
  2. 2.Anhui Key Laboratory of Functional Molecular SolidsWuhuP.R. China

Personalised recommendations