Journal of Nanoparticle Research

, Volume 9, Issue 6, pp 1109–1124 | Cite as

Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

  • Dakrong Pissuwan
  • Stella M. Valenzuela
  • Murray C. Killingsworth
  • Xiaoda Xu
  • Michael B. CortieEmail author


Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ∼30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.


hyperthermal therapy plasmon resonance plasmonic heating active and passive targeting biomedicine nanobiotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank R. Wuhrer, K. McBean and G.␣Stockton of the University of Technology Sydney for technical assistance received.


  1. 1.
    Alves-Rosa F., C. Stanganelli, J. Cabrera, N. van Rooijen, M.S. Palermo, M.A. Isturiz, 2000. Treatment with liposome-encapsulated clodronate as a new strategic approach in the management of immune thrombocytopenic purpura in a mouse model. Blood. 96, 2834–2840Google Scholar
  2. 2.
    Behnke O., T. Ammitzboll, H. Jessen, M. Klokker, K. Nilausen, J. Tranum-Jensen, L. Olsson, 1986. Non-specific binding of protein-stabilized gold sols as a source of error in immunocytochemistry. Eur J Cell Biol. 41, 326–338Google Scholar
  3. 3.
    Bozkurt A., B. Onaral, 2004. Safety assessment of near infrared light emitting diodes for diffuse optical measurements. Biomed. Eng. Online. 3, 9CrossRefGoogle Scholar
  4. 4.
    Brewer S.H., W.R. Glomm, M.C. Johnson, M.K. Knag, S. Franzen, 2005. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 21, 9303–9307CrossRefGoogle Scholar
  5. 5.
    Caswell K.K., J.N. Wilson, U.H.F. Bunz, C.J. Murphy, 2003. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915CrossRefGoogle Scholar
  6. 6.
    Chang J.-Y., Wu, H., Chen, H., Lingb, Y.-C., Tan, W., 2005. Oriented assembly of Au nanorods using biorecognition system. Chem. Comm. 1092–1094Google Scholar
  7. 7.
    Chang S.-S., C.-W. Shih, C.-D. Chen, 1999. The shape transition of gold nanorods. Langmuir. 15, 701–709CrossRefGoogle Scholar
  8. 8.
    Chithrani B.D., A.A. Ghazani, W.C.W. Chan, 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668CrossRefGoogle Scholar
  9. 9.
    Chou C.-H., C.-D. Chen, C.R.C. Wang, 2005. Highly efficient, wavelength-tunable, gold nanoparticle based photothermal nanoconvertors. J. Phys. Chem. B. 109, 11135–11138CrossRefGoogle Scholar
  10. 10.
    Connor E.E., J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1, 325–327CrossRefGoogle Scholar
  11. 11.
    Daniel M.-C., D. Astruc, 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. . 104, 293–346CrossRefGoogle Scholar
  12. 12.
    Draine B.T., P.J. Flatau, 1994. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A. 11, 1491–1499Google Scholar
  13. 13.
    Draine, B. T., Flatau, P. J., 2004. User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1,, accessed January 2005Google Scholar
  14. 14.
    Dykman L.A., M.V. Sumaroka, S.A. Staroverov, I.S. Zaitseva, V.A. Bogatyrev, 2004. Immunogenic properties of colloidal gold. Biology Bull. 31, 75–79CrossRefGoogle Scholar
  15. 15.
    El-Sayed I.H., X. Huang, M.A. El-Sayed, 2005. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 5, 829–834CrossRefGoogle Scholar
  16. 16.
    El-Sayed I.H., X. Huang, M.A. El-Sayed, 2006. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135CrossRefGoogle Scholar
  17. 17.
    Glomm W.R., 2005. Functionalized gold nanoparticles for applications in bionanotechnology. J. of Dispersion Sci. and Technol. 26, 389–414CrossRefGoogle Scholar
  18. 18.
    Goldenberg H., C.J. Tranter, 1952. Heat flow in an infinite medium heated by a sphere. Br. J. Appl. Phys. 3, 296–298CrossRefGoogle Scholar
  19. 19.
    Hainfeld J.F., D.N. Slatkin, H.M. Smilowitz, 2004. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315CrossRefGoogle Scholar
  20. 20.
    Harris N., M.J. Ford, M.B. Cortie, 2006. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem. B. 110, 10701–10707CrossRefGoogle Scholar
  21. 21.
    Hayat M.A., 1989. Colloidal Gold: Principles, Methods, and Applications. Academic Press, San Diego, CAGoogle Scholar
  22. 22.
    Hirsch L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 100, 13549–13554CrossRefGoogle Scholar
  23. 23.
    Hu M., G.V. Hartland, 2002. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. J. Phys. Chem. B. 106, 7029–7033CrossRefGoogle Scholar
  24. 24.
    Huang X., I.H. El-Sayed, W. Qian, M.A. El-Sayed, 2006a. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120CrossRefGoogle Scholar
  25. 25.
    Huang X., P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, 2006b. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82, 412–417CrossRefGoogle Scholar
  26. 26.
    Jana N.R., 2005. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small. 1, 875–882CrossRefGoogle Scholar
  27. 27.
    Johannessen J.V., 1973. Rapid processing of kidney biopsies for electron microscopy. Kidney International. 3, 46–52CrossRefGoogle Scholar
  28. 28.
    Kelly K.L., E. Coronado, L.L. Zhao, G.C. Schatz, 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107, 668–677CrossRefGoogle Scholar
  29. 29.
    Kurita H., A. Takami, S. Koda, 1998. Size reduction of gold particles in aqueous solution by pulsed laser irradiation. Appl. Phys. Lett. 72, 789–791CrossRefGoogle Scholar
  30. 30.
    Lepock J.R., 2003. Cellular effects of hyperthermia : relevance to the minimum dose for thermal damage. Int. J. Hyperthermia. 19, 252–266CrossRefGoogle Scholar
  31. 31.
    Liao H., J.H. Hafner, 2005. Gold nanorod bioconjugates. Chem. Mater. 17, 4636–4641CrossRefGoogle Scholar
  32. 32.
    Link S., C. Burda, B. Nikoobakht, M.A. El-Sayed, 2000. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B. 104, 6152–6163CrossRefGoogle Scholar
  33. 33.
    Link S., M.A. El-Sayed, 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B. 103, 8410–8426CrossRefGoogle Scholar
  34. 34.
    Link S., M.A. El-Sayed, 2000. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Inter. Rev. Phys. Chem. 19, 409–453CrossRefGoogle Scholar
  35. 35.
    Link, S., El-Sayed, M. A., 2005. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (103B correction). J. Phys. Chem. B 109, 20, 10531Google Scholar
  36. 36.
    Loo C., A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek, 2004. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. in Cancer Res., Treatment. 3, 33–40Google Scholar
  37. 37.
    Moghimi S.M., A.C. Hunter, J.C. Murray, 2005. Nanomedicine: Current status and future prospects. FASEB J. 19, 311–330CrossRefGoogle Scholar
  38. 38.
    Murphy C.J., T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, 2005. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109, 13857–13870CrossRefGoogle Scholar
  39. 39.
    Nikoobakht B., M.A. El-Sayed, 2003. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962CrossRefGoogle Scholar
  40. 40.
    O’Neal D.P., L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, 2004. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176CrossRefGoogle Scholar
  41. 41.
    Perez-Juste J., I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, 2005. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870–1901CrossRefGoogle Scholar
  42. 42.
    Pernodet N., X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, M. Rafailovich, 2006. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small. 2, 766–773CrossRefGoogle Scholar
  43. 43.
    Pissuwan D., S. Valenzuela, M.B. Cortie, 2006. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67CrossRefGoogle Scholar
  44. 44.
    Pitsillides C.M., E.K. Joe, X. Wei, R.R. Anderson, C.P. Lin, 2003. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032CrossRefGoogle Scholar
  45. 45.
    Pogue B.W., L. Lilge, M. Patterson, B. Wilson, T. Hasan, 1997. Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters. Appl. Optics. 36, 7257–7269CrossRefGoogle Scholar
  46. 46.
    Prasad V., A. Mikhailovsky, J.A. Zasadzinski, 2005. Langmuir 21, 7528–7532Google Scholar
  47. 47.
    Pustovalov V.K., 2005. Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem. Phys. 308, 103–108CrossRefGoogle Scholar
  48. 48.
    Raub C.B., E.J. Orwin, R. Haskell, 2004. Immunogold labeling to enhance contrast in optical coherence microscopy of tissue engineered corneal constructs. 26th Annual Conference of the Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, San Francisco, CAGoogle Scholar
  49. 49.
    Salata, O., 2004. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, Paper 3Google Scholar
  50. 50.
    Simpson C.R., M. Kohl, M. Essenpreis, M. Copey, 1998. Near-infrared optical properties of ex␣vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol. 43, 2465–2478CrossRefGoogle Scholar
  51. 51.
    Skirtach A.G., C. Dejugnat, D. Braun, A.S. Susha, A.L. Rogach, W.J. Parak, H. Mohwald, G.B. Sukhorukov, 2005. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 5, 1371–1377CrossRefGoogle Scholar
  52. 52.
    Slot J.W., H.J. Geuze, 1985. A new method of preparing gold probes for multiple-labelling cytochemistry. Eur. J. Cell Biol. 38, 87–93Google Scholar
  53. 53.
    Takahashi, H., Niidome, Y., Yamada, S., 2005. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem. Comm. 2247–2249Google Scholar
  54. 54.
    Thomas K.G., S. Barazzouk, B.I. Ipe, S.T.S. Joseph, P.V. Kamat, 2004. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B. 108, 13066–13068CrossRefGoogle Scholar
  55. 55.
    Vladimirov Y.A., A.N. Osipov, G.I. Klebanov, 2004. Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Moscow) 69, 81–90CrossRefGoogle Scholar
  56. 56.
    Wang H., T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.-X. Cheng, 2005. In vitro and in␣vivo two-photon luminescence imaging of single gold nanorods. P. Natl. Acad. Sci. USA. 102, 15752–15756CrossRefGoogle Scholar
  57. 57.
    Weissleder R., 2001. A clearer vision for in␣vivo imaging. Nat. Biotechnol. 19, 316–317CrossRefGoogle Scholar
  58. 58.
    Xu X., M.B. Cortie, 2006. Shape change and color gamut in gold nanorods, dumbbells and dog-bones. Adv. Func. Mater. 16, 2170–2176CrossRefGoogle Scholar
  59. 59.
    Xu X., M. Stevens, M.B. Cortie, 2004. In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem. Mater. 16, 2259–2266CrossRefGoogle Scholar
  60. 60.
    Yao C., R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, G. Hüttmann, 2005. Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles. J. Biomed. Optics. 10, 064012CrossRefGoogle Scholar
  61. 61.
    Yu Y.-Y., S.-S. Chang, C.-L. Lee, C.R.C. Wang, 1997. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B. 101, 6661–6664CrossRefGoogle Scholar
  62. 62.
    Zharov V.P., K.E. Mercer, E.N. Galitovskaya, M.S. Smeltzer, 2006. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Dakrong Pissuwan
    • 1
  • Stella M. Valenzuela
    • 2
  • Murray C. Killingsworth
    • 3
  • Xiaoda Xu
    • 1
  • Michael B. Cortie
    • 1
    Email author
  1. 1.Institute for Nanoscale TechnologyUniversity of Technology SydneyBroadwayAustralia
  2. 2.Department of Medical and Molecular BiosciencesUniversity of Technology SydneyBroadwayAustralia
  3. 3.Sydney South West Pathology ServiceLiverpool BCAustralia

Personalised recommendations