Journal of Nanoparticle Research

, Volume 9, Issue 4, pp 647–652

Synthesis and nonlinear light scattering of microemulsions and nanoparticle suspensions

  • German Salazar-Alvarez
  • Eva Björkman
  • Cesar Lopes
  • Anders Eriksson
  • Sören Svensson
  • Mamoun Muhammed
Article

Abstract

Microemulsions composed of normal or inverse micellar solutions and aqueous suspensions of pristine (uncoated) or silica-coated iron oxide nanoparticles, mainly γ-Fe2O3, were synthesised and their optical limiting properties investigated. The microemulsions are colorless solutions with high transparency for visible wavelengths while the aqueous suspensions of iron oxide are of pale yellow colour. Optical limiting experiments performed in 2 mm cells using a f/5 optical system with a frequency doubled Nd:YAG laser delivering 5 ns pulses with 10 Hz repetition rate, showed clamping levels of ∼3 μJ for the suspensions of both pristine and silica-coated iron oxide nanoparticles. A strong photoinduced nonlinear light scattering was observed for the water-in-oil microemulsion and the aqueous suspensions of nanoparticles while oil-in-water microemulsions did not show a significant nonlinear effect. Measurements carried out using an integrating sphere further verified that the photoinduced nonlinear light scattering is the dominating nonlinear mechanism while the nonlinear absorption of iron oxide nanoparticles is negligible at 532 nm.

Keywords

microemulsions nanoparticles nonlinear scattering iron oxide synthesis colloids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brusatin G., Signorini R. (2002) Linear and nonlinear optical properties of fullerenes in solid state materials. J. Mater. Chem. 12:1964CrossRefGoogle Scholar
  2. Hashimoto T., Yamada T., Yoko T. (1996) Third-order nonlinear optical properties of sol–gel derived α-Fe2O3, γ-Fe2O3, and Fe3O4 thin films. J. Appl. Phys. 80:3184CrossRefGoogle Scholar
  3. Hollins R.C. (1999) Materials for optical limiters. Curr. Opin. Solid State Mater. Sci. 4:189CrossRefGoogle Scholar
  4. Joudrier V., Bourdon P., Hache F., Flytzanis C. (1998) Nonlinear light scattering in a two-component medium: optical limiting application. Appl. Phys. B 67:627CrossRefGoogle Scholar
  5. Khoo I.C., Wood M.V., Guenther B.D., Shih M.Y., Chen P.H. (1998) Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array. J. Opt. Soc. Am. B. 15:1533Google Scholar
  6. Leser M.E., Kooijman M., Pollitte J., Magid L.J. (1991) Effect of the macrobicyclic ligand Kryptofix 222 on AOT/water/cyclohexane microemulsions. J. Phys. Chem. 95:9013CrossRefGoogle Scholar
  7. Liu L.L., Zhang S., Qin Y., Guo Z.X., Ye C., Zhu D. (2003) Solvent effects of optical limiting properties of carbon nanotubes. Synth. Met. 135:853CrossRefGoogle Scholar
  8. Mansour K., Soileau M.J., Van Stryland E.W. (1992) Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9:1100Google Scholar
  9. Massart R. (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17:1247CrossRefGoogle Scholar
  10. Mishra S.R., Rawat H.S., Laghate M. (1998) Nonlinear absorption and optical limiting in metalloporphyrins. Opt. Comm. 147:328CrossRefGoogle Scholar
  11. Nashold K.M., Walter D.P. (1995) Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions. J. Opt. Soc. Am. B 12:1228CrossRefGoogle Scholar
  12. Petit C., Pileni M.P. (1997) Nanosize cobalt boride particles: Control of the size and properties. J. Magn. Magn. Mater. 166:82CrossRefGoogle Scholar
  13. Philipse A.P., van Vruggen M.P.B., Pathmamanoharan C. (1994) Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10:92CrossRefGoogle Scholar
  14. Tiejun X., Hagan D.J., Dogariu A., Said A.A., van Stryland E.W. (1997) Optimization of optical limiting devices based on excited-state absorption. Appl. Opt. 36:4110Google Scholar
  15. Umeton C., Cipparrone G., Simoni F. (1986) Power limiting and optical switching with nematic liquid-crystal films. Opt. Quant. Electron. 18:312CrossRefGoogle Scholar
  16. Vicari L. (2002) Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique. Eur. Phys. J. E 9:335CrossRefGoogle Scholar
  17. Vincent D., Cruickshank J. (1997) Optical limiting with C60 and other fullerenes. Appl. Opt. 36:7794CrossRefGoogle Scholar
  18. Vivien L., Anglaret E., Riehl D., Bacou F., Journet C., Goze C., Andrieux M., Brunet M., Lafonta L., Bernier P., Hache F. (1999) Single-wall carbon nanotubes for optical limiting. Chem. Phys. Lett. 307:317CrossRefGoogle Scholar
  19. Wang L., Muhammed M. (1995) Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions. J. Mater. Chem. 5:309CrossRefGoogle Scholar
  20. Wei T.H., Hagan D.J., Sence M.J., Van Stryland E.W., Perry J.W., Coulter D.R. (1992) Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines. Appl. Phys. B 54:46CrossRefGoogle Scholar
  21. Yu B., Zhu C., Gan F. (2000) Large nonlinear optical properties of Fe2O3 nanoparticles. Physica E 8:360CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • German Salazar-Alvarez
    • 1
  • Eva Björkman
    • 1
  • Cesar Lopes
    • 2
  • Anders Eriksson
    • 2
  • Sören Svensson
    • 2
  • Mamoun Muhammed
    • 1
  1. 1.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of Functional MaterialsSwedish Defence Research AgencyLinköpingSweden

Personalised recommendations