Journal of Nanoparticle Research

, Volume 9, Issue 1, pp 93–107 | Cite as

A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers

  • Daniel A. Japuntich
  • Luke M. Franklin
  • David Y. Pui
  • Thomas H. Kuehn
  • Seong Chan Kim
  • Andrew S. Viner
Article

Abstract

Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10–400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.

Keywords

filter test nanoparticles condensation particle counters differential mobility analyzer (DMA) scanning mobility particle sizer (SMPS) occupational health 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranovski, I.E., R.D. Braddock & T. Myojo, 2001. Comparative study of the performance of nine filters utilized in filtration of aerosol by bubbling. Aerosol Sci. Technol, 35, 852–859Google Scholar
  2. AHSRAE, 1999. Method of Testing General Ventilation Air-Cleaning Devices for Removal. Efficiency by Particle Size. (ASHRAE Standard 52.2). ASHRAE Inc., Atlanta, GAGoogle Scholar
  3. Aitken R.J., K.S. Creely & C.L. Tran, 2004. Nanoparticles: An occupational hygiene review. HSE Report 274. Health and Safety Executive, UKGoogle Scholar
  4. ASTM 2001. Standard Methods or Gas Flow Resistance Testing of Filtration Media. (ASTM Standard F778-88). ASTM International, West Conshohocken, PAGoogle Scholar
  5. ASTM 2005. Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors, (ASTM F2519–05). ASTM International, West Conshohocken, PAGoogle Scholar
  6. Benarie, M. & Staub R. Luft, Influence of Pore Struture Upon Separation Efficiency in Fiber Filters. 1969. 29 (2), p. 37Google Scholar
  7. Brown, R.C., 1993. Aerosol Filtration, Chapter 4, Pergamon, OxfordGoogle Scholar
  8. Cheng Y. S., Yeh H. C. 1980. J. Aerosol Sci. 11: 313Google Scholar
  9. Davies, C.N., 1952. Proc. Inst. Mech. Engrs., London, 1B, p.␣185Google Scholar
  10. Dhaniyala S., Lui B.Y. H. 1999. J. of IEST 42(1): 32–40Google Scholar
  11. Franklin, L., 2005. Characterization and Optimization of a TSI Model 8160 Automated Filter Tester for Nanoparticle Filtration Studies. MS Plan B Paper, Mechanical Engineering, University of Minnesota, Minneapolis, MNGoogle Scholar
  12. Heim M., Mullins B. J., Wild M., Meyer J., Kasper G. 2005. Aerosol Sci. Technol 39: 782–789Google Scholar
  13. Hinds W.C. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2nd ed.). New York: John Wiley and SonsGoogle Scholar
  14. Huang S.H, Chen C-C. 2001. Aerosol Sci. Technol 35: 792–804Google Scholar
  15. Japuntich, D.A., 1991. Particle Clogging of Fibrous Filters. Ph.D Thesis. Loughborough, Loughborough University of Technology, U.KGoogle Scholar
  16. Kim, S.C., M.S. Harrington, A. Rengasamy & D.Y.H. Pui, 2005. Collection Efficiency of Filter Media for Nanoscale Particles. Second International Symposium on Nanotechnology and Occupational Health. Minneapolis, MNGoogle Scholar
  17. Kirsch, V.A. & I.B. Stechkina, 1978. In: Shaw D. T. ed. Fundamentals of Aerosol Science, Chapter 4. Wiley, New York, p. 165Google Scholar
  18. Kirsh V.A. 2003. Colloid Journal (Kolloidnyl Zhurnal) 65(6): 726–732Google Scholar
  19. Lee K.W., Liu B.Y.H. 1980. J. Air Poll. Control Assoc. 30: 377–381Google Scholar
  20. Lifshutz, N. & M. Pierce, 1996. A general correlation of MMPS penetration as a function of face velocity with the Model 8140 using the CertiTest 8160. 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference, Portland, OR, 698–707Google Scholar
  21. Rubow, K., 1981. Submicron Aerosol Filtration Characteristics of Membrane Filters, Ph.D. Thesis, U. of MN, pp. 37–38Google Scholar
  22. Skaptsov A.S., Baklanov A. M., Dubtsov S. N., Laulainen N. S., Sem G., Kaufman S., 1996. J. Aerosol Sci. 27(S1): S145–S146Google Scholar
  23. Wang HC. 1996. Aerosol Sci. Technol. 24: 129–134Google Scholar
  24. Wang H.C., Kasper G. 1991. J. Aerosol Sci 22: 31–41Google Scholar
  25. Yeh H.C. 1993. Electrical Techniques. In K. Willeke, E.A. Baron (Eds.), Aerosol Measurement: Principles, Techniques, and Application. Van Nostrand Reinhold, New York, NY pp. 410–426Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Daniel A. Japuntich
    • 1
  • Luke M. Franklin
    • 2
  • David Y. Pui
    • 2
  • Thomas H. Kuehn
    • 2
  • Seong Chan Kim
    • 2
  • Andrew S. Viner
    • 1
  1. 1.3M CompanySaint PaulUSA
  2. 2.Institute of TechnologyUniversity of Minnesota, 1100 Mechanical EngineeringMinneapolisUSA

Personalised recommendations