Journal of Nanoparticle Research

, Volume 9, Issue 4, pp 589–594

A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature

Article

Abstract

A simple method, chemical precipitation at low temperature from Ca(NO3)2·4H2O and (NH4)2HPO4 to tailor single phase, highly crystalline nanocrystal hydroxyapatite (HAp) powders was introduced in this paper. HAp powders with controlled morphologies (spherical and rod-like) and different grain sizes have been obtained by varying the reaction temperature, reaction mode, and heat treatment accordingly. X-ray diffraction (XRD) results combined with the Fourier transform-infrared spectroscopy (FT-IR) indicates that the single phase, nanocrystal HAp powder could be obtained in one-step without further heat treatment. At 40 °C with a quick mixing mode, ultra-fine complete spherical HAp particles with diameter range size of 20–50 nm could be obtained.

Keywords

hydroxyapatite chemical precipitation bioceramic nanoparticles colloids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afshar A., Ghorbani M., Ehsani N., Saeri M.R., Sorrell C.C. (2003). Some important factors in the wet precipitation process of hydroxyapatite. Materials and design 24:197–202CrossRefGoogle Scholar
  2. Ahn E.S., Gleason N.J., Nakahira A., Ying J.Y. (2001). Nanostructure processing of hydroxyapatite-based Bioceramics. Nano Lett 1:149–153CrossRefGoogle Scholar
  3. Choi D.W., Marra K.G., Kumta P.N. (2004). Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites. Materials Res Bull 39:417–432CrossRefGoogle Scholar
  4. Han Y.C., Li S.P., Wang X.Y., Chen X.M. (2004). Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method. Materials Res Bull 39:25–32CrossRefGoogle Scholar
  5. Ioku K., Yamauchi S., Fujimori H., Goto S., Yoshimura M. (2002). Hydrothermal preparation of fibrous apatite and apatite sheet. Solid State Ionics 151:147–150CrossRefGoogle Scholar
  6. Kim H.W., Koh Y.H., Li L.H., Leec S., Kim H.E. (2004a). Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 25:2533–2538CrossRefGoogle Scholar
  7. Kim T.S., Kumta P.N. (2004b). Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Materials Sci Eng B 111:232–236CrossRefGoogle Scholar
  8. Kong Y.M., Bae C.J., Lee S.H., Kim H.W., Kim H.E. (2005). Improvement in biocompatibility of ZrO2–Al2O3 nano-composite by addition of HA. Biomaterials 26:509–517CrossRefGoogle Scholar
  9. Kumar R., Prakash K.H., Cheang P., Khor K.A. (2004) Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 20(13):5196–5200CrossRefGoogle Scholar
  10. Kuriakose T.A., Kalkura S.N., Palanichamy M., Arivuoli D., Dierks K., Bocelli G., Betzel C. (2004). Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J Crystal Growth 263:517–523CrossRefGoogle Scholar
  11. Liu D.M., Yang Q.Z., Troczynski T. (2002) Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 23:691–698CrossRefGoogle Scholar
  12. Liu H.S., Chin T.S., Lai L.S., Chiu S.Y., Chung K.H., Changb C.S., Lui M.T. (1997). Hydroxyapatite synthesized by a simplified hydrothermal method. Ceramics Int 23:19–25CrossRefGoogle Scholar
  13. Liu Y.K., Hou D.D., Wang G.H. (2004). A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Materials Chem Phy 86:69–73CrossRefGoogle Scholar
  14. Mochales C., Briak-Benabdeslam H.E., Ginebra M.P., Terol A., Planell J.A., Boudeville P. (2004). Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Biomaterials 25:1151–1158CrossRefGoogle Scholar
  15. Riman R.E., Suchaned W.L., Byrappa K., Chen C.W., Shuk P., Oakes C.S. (2002). Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 151:393–402CrossRefGoogle Scholar
  16. Wu W.J., Nancollas G.H. (1997). Kinetics of nucleation and crystal growth of hydroxyapatite and fluorapatite on titanium oxide surfaces. Colloids and Surfaces B Biointerfaces 10:87–94CrossRefGoogle Scholar
  17. Yeong K.C.B., Wang J., Ng S.C. (2001). Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22:2705–2712CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations