Journal of Nanoparticle Research

, Volume 9, Issue 1, pp 11–22

Protecting workers and the environment: An environmental NGO’s perspective on nanotechnology

  • John M. Balbus
  • Karen Florini
  • Richard A. Denison
  • Scott A. Walsh
Perspectives Special issue: Nanoparticles and Occupational Health


Nanotechnology, the design and manipulation of materials at the atomic scale, may well revolutionize many of the ways our society manufactures products, produces energy, and treats diseases. New materials based on nanotechnology are already reaching the market in a wide variety of consumer products. Some of the observed properties of nanomaterials call into question the adequacy of current methods for determining hazard and exposure and for controlling resulting risks. Given the limitations of existing regulatory tools and policies, we believe two distinct kinds of initiatives are needed: first, a major increase in the federal investment in nanomaterial risk research; second, rapid development and implementation of voluntary standards of care pending development of adequate regulatory safeguards in the longer term. Several voluntary programs are currently at various stages of evolution, though the eventual outputs of each of these are still far from clear. Ultimately, effective regulatory safeguards are necessary to provide a level playing field for industry while adequately protecting human health and the environment. This paper reviews the existing toxicological literature on nanomaterials, outlines and analyzes the current regulatory framework, and provides our recommendations, as an environmental non-profit organization, for safe nanotechnology development.


nanotoxicology nanomaterials nanoscience nanoparticles ultrafine particles health effects safety environmental health occupational health nanotechnology implications environmental regulations occupational regulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrievsky G., V. Klochkov, L. Derevyanchenko, 2005. Is C60 fullerene molecule toxic? Fuller. Nanotub. Car. N 13, 363–376CrossRefGoogle Scholar
  2. ASTM International, 2005. Committee E56 on Nanotechnology [Internet]. [cited 2006 July 5]. Available from: Scholar
  3. Oxonica and BASF to Collaborate on Commercialisation of Fuel Additive [Internet], 2004 July 13 [cited 2006 July 5]. Available from: = 221Google Scholar
  4. Balazy A., M. Toivola, T. Reponen, A. Podgorski, A. Zimmer & S. Grinshpun, 2006. Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Ann. Occup. Hyg. 50, 259–269Google Scholar
  5. Carbon Nanotubes, Inc. Material Safety Data Sheet – CNI Carbon Nanotubes [Internet], 2004 September 17 [cited 2006 July 5]. Available from: Scholar
  6. Chen Y., Z. Xue, D. Zheng, K. Xia, Y. Zhao, T. Liu, Z. Long, J. Xia, 2003. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr. Gene Ther. 3(3), 273–279CrossRefGoogle Scholar
  7. Code of Federal Regulations, 29 CFR §1910.134:2005Google Scholar
  8. Code of Federal Regulations, 29 CFR §1910.1000:2005. Table Z-1Google Scholar
  9. Code of Federal Regulations, 29 CFR §1910.1200:2005Google Scholar
  10. Code of Federal Regulations, 40 CFR § 158:2005Google Scholar
  11. Daniel M., D. Astruc, 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346CrossRefGoogle Scholar
  12. Denison R., 2005. A proposal to increase federal funding of nanotechnology risk research to at least $100 million annually [Internet], 2006 [cited 2006 July 5]. Available from: milquestionl.pdfGoogle Scholar
  13. Denison R. & S. Murdock, 2005 November 17. An ounce of prevention. Fort Wayne News Sentinel and other Knight Ridder/Tribune News Service newspapersGoogle Scholar
  14. D’Ippoliti D., F. Forastiere, C. Ancona, N. Agabiti, D. Fusco, P Michelozzi, C. Perucci, 2003. Air pollution and myocardial infarction in Rome: a case-crossover analysis. Epidemiol. 14(5):528–535CrossRefGoogle Scholar
  15. Dockery D., H. Lettmann-Gibson, D. Rich, M. Link, M. Mittleman, D. Gold, P. Koutrakis, J. Schwartz, R. Verrier, 2005. Association of air pollution with increased incidence of centricular tachyarrhythmias recorded by implanted cardioverter defibrillators. Environ. Health Perspect. 113(6):670–674Google Scholar
  16. Environmental Defense, 2005 [cited 2006 July 5]. Environmental Defense and DuPont: Global Nanotechnology Standards of Care Partnership [Internet]. Available from: http://www. = 4821Google Scholar
  17. Florence A. & N. Hussain, 2001. Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv. Drug Deliv. Rev. Oct 1; 50 Suppl 1, S69–S89 (Review)Google Scholar
  18. Fortner J., D. Lyon, C. Sayes, A. Boyd, J. Falkner, E. Hotze, L. Alemany, Y. Tao, W. Guo, K. Ausman, V. Colvin, J. Hughes, 2005. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 39:4307–4316CrossRefGoogle Scholar
  19. Gauderman J., E. Avol, F. Gilliland, H. Vora, D. Thomas, K. Berhane, R. McConnell, N. Kuenzli, F. Lurmann, E. Rappaport, H. Margolis, D. Bates, J. Peters, 2004. The effect of air pollution on lung development from 10 to 18 years of age. NEJM 351(11):1057–1067CrossRefGoogle Scholar
  20. Gharbi N., M. Pressac, M. Hadchouel, H. Szwarc, S. Wilson, F. Moussa, 2005. Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano. Lett. 5(12):2578–2585CrossRefGoogle Scholar
  21. Government Accountability Office, 12 June 2005. “Options Exist to Improve EPA’s Ability to Assess Health Risks and Manage Its Chemical Review Program,” GAO-05–458, p. 11Google Scholar
  22. Gupta A., A. Curtis, 2004. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 25:3029–3040CrossRefGoogle Scholar
  23. Hardman R., 2005. A toxicological review of quantum dots: toxicity depends on physico-chemical and environmental factors. Environ. Health Persp. Nat. Inst. of Environ. Health Sci. doi: 10.1289/ehp.8284Google Scholar
  24. International Council on Nanotechnology (ICON), 2006 [cited 2006 July 5]. EHS Database [Internet]. Available from: Scholar
  25. International Standards Organization, 2005 [cited 2006 July 5]. Nanotechnologies Technical Committee – TC 229 [Internet]. Available from: = 5932Google Scholar
  26. Kam N., M. O’Connell, J. Wisdom, H. Dai, 2005. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. 102(33):11600–11605CrossRefGoogle Scholar
  27. Kelch D.R., M. Simone & M.L. Madell, 1998 [cited 2006 August 2]. U.S. Department of Agriculture Economic Research Service. Biotechnology in Agriculture Confronts Agreements in the WTO [Internet]. Available from: Scholar
  28. Kreyling W.G., M. Semmler-Behnke, W. Moller, 2006. Ultrafine particle-lung interactions: does size matter? J. Aerosol Med. Spring 19(1):74–83CrossRefGoogle Scholar
  29. Krupp F., & C. Holliday, 2005 June 14; page. Let’s Get Nanotech Right. Wall Street Journal, p. B2Google Scholar
  30. Kunzli N., M. Jerrett, W. Mack, B. Beckerman, L. LaBree, F. Gilliland, D. Thomas, J. Peters, H. Hodis, 2005. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 113(2):201–206Google Scholar
  31. Lam C., J. James, R. McCluskey, R. Hunter, 2003. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77:126–134CrossRefGoogle Scholar
  32. Langsner H., S. Martinez, D. Zaveri, K. Iguchi, R. Sumangali & M. Milcetich, 2005. Nanotechnology: Non-traditional methods for valuation of nanotechnology producers. Report Prepared by Innovest Strategic Value Advisors. New York, NYGoogle Scholar
  33. Lauterwasser C. ed. 2005. Allianz Group. Small sizes that matter: Opportunities and risks of Nanotechnologies. Report in co-operation with the OECD International Futures Programme. Munich, GermanyGoogle Scholar
  34. Li N., C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, A. Nel, 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111(4):455–460CrossRefGoogle Scholar
  35. Lustberg M., E. Silbergeld, 2002. Blood lead levels and mortality. Arch. Intern. Med. 162:2443–2449CrossRefGoogle Scholar
  36. Lux Research Inc., 2006. The Nanotech Report, 4th edn. New York (NY)Google Scholar
  37. Lux Research Inc., 2005. A prudent approach to nanotechnology, environmental, health, and safety risks. New York (NY)Google Scholar
  38. Macoubrie J., 2005. Informed Public Perceptions of Nanotechnology and Trust in Government. Woodrow Wilson International Center for Scholars, Washington, DCGoogle Scholar
  39. Maynard A.D., 2006. Nanotechnology: A Research Strategy for Addressing Risk. Woodrow Wilson International Center for Scholars. Washington, DCGoogle Scholar
  40. Muller J., F. Huaux, N. Moreau, P. Mission, J. Heilier, M. Delos, M. Arras, A. Fonseca, J. Nagy, D. Lison, 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207:221–231Google Scholar
  41. Munich Re Group 2002. Nanotechnology: What is in Store for Us? Munich Re Group. Munich, GermanyGoogle Scholar
  42. National Institute of Occupational Safety and Health, 2005. Approaches to Safe Nanotechnology: An Information Exchange with NIOSH [Internet]. [cited 2006 July 5] Available from: Scholar
  43. National Pollution Prevention and Toxics Advisory Committee (NPPTAC), advisory committee to the U.S. Environmental Protection Agency, 22 November 2005. Interim Ad Hoc Work Group on Nanoscale Materials. Overview of Issues for Consideration by NPPTAC. Available from: http://www. (use Advanced Search’s Document Search function, enter EPA-HQ-OPPT-2002–0001–0068 as the Document ID)Google Scholar
  44. Nikula K.J., V. Vallyathan, F. Green, F. Hahn, 2001. Influence of exposure concentration or dose on the distribution of particulate material in rat and human lungs. Environ. Health Perspect. 109:311–318Google Scholar
  45. NRC (National Research Council) 1998. Research Priorities for Airborne Particulate Matter: 1. Immediate Priorities and a Long-Range Research Portfolio. Washington, DC: National Academy PressGoogle Scholar
  46. NRC (National Research Council) 2004. Research Priorities for Airborne Particulate Matter: 4. Continuing Research Progress. Washington, DC: National Academy PressGoogle Scholar
  47. Nanoscale Science, Engineering and Technology (NSET), Subcommittee of the Committee on Technology, National Science and Technology Council, 2005 March [cited 2006 July 5]. The National Nanotechnology Initiative: Research and Development Leading to a Revolution in Technology and Industry: Supplement to the President’s FY2006 Budget [Internet]. Available from: Scholar
  48. Oberdorster E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112:1058–1062CrossRefGoogle Scholar
  49. Oberdorster G., E. Oberdörster, J. Oberdörster, (2005a). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113:823–839Google Scholar
  50. Oberdorster G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, 2005b. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2:8CrossRefGoogle Scholar
  51. Occupational Safety and Health Act of 1971, § 5:29 U.S.C. § 654Google Scholar
  52. Pantarotto D., J. Briand, M. Prato, A. Bianco, 2004. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb). 1:16–17CrossRefGoogle Scholar
  53. Phibbs P., 13 August 2004. Federal Government Urged to Boost Spending on Managing Risks Posed by Nanotechnology. Daily Environment Report, p. A-3Google Scholar
  54. Pope C., R. Burnett, M. Thun, E. Calle, D. Krewski, K. Ito, G. Thurston, 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141CrossRefGoogle Scholar
  55. Rejman J., V. Oberle, I. Zuhorn, D. Hoekstra, 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377:159–169CrossRefGoogle Scholar
  56. Roco M.C., 2005a. The emergence and policy implications of converging new technologies integrated from the nanoscale. J. Nanoparticle Res. 7(2–3), 127–143Google Scholar
  57. Roco M.C., 2005b. International perspective on government nanotechnology funding in 2005. J. Nanoparticle Res. 7(6), 707–712Google Scholar
  58. Sayes C., J. Fortner, W. Guo, D. Lyon, A. Boyd, K. Ausman et al., 2004. The differential cytotoxicity of water-soluble fullerenes. Am. Chem. Soc. 4:1881–1887Google Scholar
  59. Sayes C., A. Gobin, K. Ausman, J. Mendez, J. West, V. Colvin, 2005. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595CrossRefGoogle Scholar
  60. Seifert, C., 15 July 2004. Industry Surveys. Insurance: Property-Casualty. Standard Poor’s: NYGoogle Scholar
  61. Shvedova A., E. Kisin, R. Mercer, A. Murray et al., 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5):L698–L708CrossRefGoogle Scholar
  62. Slaughter J., T. Lumley, L. Sheppard, J. Doenig, G. Shapiro, 2003. Effects of ambient air pollution on symptom severity and medication use in children with asthma. Allergy Asthma Immunol. 91(4):346–353CrossRefGoogle Scholar
  63. Swiss Re, 2004. Nanotechnology: Small Matter, many Unknowns. Swiss Re. Zurich, SwitzerlandGoogle Scholar
  64. The Royal Society, the Royal Academy of Engineering 2004. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and the Royal Academy of Engineering. London, EnglandGoogle Scholar
  65. Toxic Substances Control Act of 1976, § 3:15 U.S.C. § 2602Google Scholar
  66. U.S. Department of Agriculture Agricultural Research Service, 1997 [cited 5 July 2006]. EPA and Pesticide Registration Issues [Internet]. Available from: Scholar
  67. U.S. Environmental Protection Agency, 2005. Nanotechnology White Paper – External Review Draft. Prepared by the Nanotechnology Workgroup, a group of EPA’s Science Policy Council. Washington, DCGoogle Scholar
  68. Wang H., J. Wang, X. Deng, H. Sun, Z. Shi, Z. Gu, Y. Liu, Y. Zhao, 2004. Preparation and biodistribution of 125I-labeled water-soluble single-wall carbon nanotubes. J. Nanosci. Nanotechnol. 4(8):1019–1024CrossRefGoogle Scholar
  69. Warheit D., B. Laurence, K. Reed, D. Roach, G. Reynolds, T. Webb, 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77:117–125CrossRefGoogle Scholar
  70. Weiss R., 28 March 2005. Nanotech Is Booming Biggest in U.S., Report Says. Washington Post, p. A6Google Scholar
  71. Wellenius G., J. Schwartz, M. Mittleman, 2005. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 36(12):2549–2553CrossRefGoogle Scholar
  72. Wilhelm M., B. Ritz, 2005. Local variation in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ. Health Perspect. 113(9):1212–1221CrossRefGoogle Scholar
  73. Wood S., 2005. Knowing nano: understanding the risks of the science of the small Jupiter, Socially Responsible Investment and Governance Team. Kent, EnglandGoogle Scholar
  74. Woodrow Wilson Center Project on Emerging Nanotechnologies, 2006 [cited 5 July 2006]. Nanotechnology. Environmental and Health Implications. A database of current research [Internet]. Washington, DC. Available from: Scholar
  75. Zheng M., A. Jagota, M. Strano, A. Santos, P. Barone, S. Chou, B. Diner, M. Dresselhaus, R. McLean, G. Onoa, G. Samsonidze, E. Semke, M. Usrey, D. Walls, 2003. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650):1545–1548CrossRefGoogle Scholar
  76. Zhao X., A. Striolo, P. Cummings, 2005. C60 binds to and deforms nucleotides. Biophys. J. 89(6):3856–3862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • John M. Balbus
    • 1
  • Karen Florini
    • 1
  • Richard A. Denison
    • 1
  • Scott A. Walsh
    • 1
  1. 1.Environmental DefenseWashingtonUSA

Personalised recommendations