Journal of Nanoparticle Research

, Volume 9, Issue 2, pp 183–189 | Cite as

Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

  • O. M. Castellini
  • G. K. Walejko
  • C. E. Holladay
  • T. J. Theim
  • G. M. Zenner
  • W. C. Crone
Article

Abstract

Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public’s knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics.

Keywords

nanotechnology communication public knowledge public understanding communicating research societal dimensions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best R.M., Rowe M. et al. (2005). Deep-level comprehension of science texts – the role of the reader and the text Top. Lang. Disord. 25(1): 65–83Google Scholar
  2. Cobb M.D., Macoubrie J. (2004). Public perceptions about nanotechnology: Risks, benefits and trust J. Nanoparticle Res. 6(4): 395–405CrossRefGoogle Scholar
  3. Kasuya R.T., 2004. Give your audience a problem and they will learn. Presentations (August 2004)Google Scholar
  4. Levie W.H., Lentz R. (1982). Effects of text illustrations – a review of research ECTJ-Educ. Commun. Technol. J. 30(4): 195–232Google Scholar
  5. Macoubrie J., 2005. Informed Public Perceptions of Nanotechnology and Trust in Government, Woodrow Wilson International Center for ScholarsGoogle Scholar
  6. Massey A.P., Brown S.A. et al. (2005). It’s all fun and games...until students learn J. Inform. Syst. Educ. 16(1): 9–15Google Scholar
  7. Mayer R.E., Moreno R. (1998). Split-attention effect in multimedia learning Evidence for dual processing systems in working memory J. Educ. Psychol. 90(2): 312–320CrossRefGoogle Scholar
  8. Melber L.M., Abraham L.M. (1999). Beyond the classroom: Linking with informal education Sci. Act. 36(1): 3–4Google Scholar
  9. Nisbet M.C. (2005). The competition for worldviews: Values, information, and public support for stem cell research Int. J. Public Opin. Res. 17(1): 90–112CrossRefGoogle Scholar
  10. NSB, 1999. Preparing Our Children: Math and Science Education in the National Interest, National Science BoardGoogle Scholar
  11. NSB, 2003. The Science and Engineering Workforce – Realizing America’s Potential, National Science BoardGoogle Scholar
  12. Paivio A. (1986). Mental Representations: A Dual Coding Approach .New YorkOxford University PressGoogle Scholar
  13. Pecora T.A., Owen M.C. et al. (2003). Bridging the gap between pure science and the general public: Comparison of the informational exchange for these extremities in scientific awareness J. Mol. Struct. Theochem 666: 699–706CrossRefGoogle Scholar
  14. Rennie L.J., Stocklmayer S.M. (2003). The communication of science and technology: Past, present and future agendasInt. J. Sci. Educ. 25(6): 759–773CrossRefGoogle Scholar
  15. Roco M.C. (2004). The US National Nanotechnology Initiative after 3 years (2001–2003) J. Nanoparticle Res. 6(1): 1–10CrossRefGoogle Scholar
  16. Scheufele D., Lewenstein B.V. (2005). The public and nanotechnology: How citizens make sense of emerging technologies J. Nanoparticle Res. 7(6): 659–667CrossRefGoogle Scholar
  17. Shelton A.M., Sears M.K. (2001). The monarch butterfly controversy: Scientific interpretations of a phenomenon Plant J. 27(6): 483–488CrossRefGoogle Scholar
  18. Sturgis P., Cooper H. et al. (2005). Attitudes to biotechnology estimating the opinions of a better-informed public New Genet. Soc. 24(1): 31–56CrossRefGoogle Scholar
  19. Tennyson R.D., Cocchiarella M.J. (1986). An empirically based instructional-design theory for teaching concepts Rev. Educ. Res. 56(1): 40–71CrossRefGoogle Scholar
  20. Thompson V.A., Paivio A. (1994). Memory for pictures and sounds – independence of auditory and visual codes Can. J. Exp. Psychol.48(3): 380–398CrossRefGoogle Scholar
  21. van Dijk T.A., Kintsch W. (1983). Strategies of Discourse Comprehension New York, Academic PressGoogle Scholar
  22. Van Langen A., Dekkers H. (2005). Crossnational differences in participating in tertiary science, technology, engineering and mathematics education Comp. Educ. 41(3): 329–350CrossRefGoogle Scholar
  23. Winter E. (2004). Public communication of science and technology – German and European perspectives Sci. Commun. 25(3): 288–293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. M. Castellini
    • 1
  • G. K. Walejko
    • 1
  • C. E. Holladay
    • 1
  • T. J. Theim
    • 1
  • G. M. Zenner
    • 1
  • W. C. Crone
    • 1
    • 2
  1. 1.Materials Research Science and Engineering CenterUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations