Journal of Nanoparticle Research

, Volume 9, Issue 3, pp 479–489 | Cite as

Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)

  • Lingling Zhang
  • Yunhong Jiang
  • Yulong Ding
  • Malcolm Povey
  • David York
Article

Abstract

The antibacterial behaviour of suspensions of zinc oxide nanoparticles (ZnO nanofluids) against E. Coli has been investigated. ZnO nanoparticles from two sources are used to formulate nanofluids. The effects of particle size, concentration and the use of dispersants on the antibacterial behaviour are examined. The results show that the ZnO nanofluids have bacteriostatic activity against E. coli. The antibacterial activity increases with increasing nanoparticle concentration and increases with decreasing particle size. Particle concentration is observed to be more important than particle size under the conditions of this work. The results also show that the use of two types of dispersants (Polyethylene Glycol (PEG) and Polyvinylpyrolidone (PVP)) does not affect much the antibacterial activity of ZnO nanofluids but enhances the stability of the suspensions. SEM analyses of the bacteria before and after treatment with ZnO nanofluids show that the presence of ZnO nanoparticles damages the membrane wall of the bacteria. Electrochemical measurements using a model DOPC monolayer suggest some direct interaction between ZnO nanoparticles and the bacteria membrane at high ZnO concentrations.

Keywords

antibacterial activity zinc oxide nanoparticles nanofluids mechanisms E. coli nanoengineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axtell H.C, S.M. Hartley & R.A. Sallavanti, 2005. Multi-functional protective fiber and methods for use. United States Patent, US2005026778Google Scholar
  2. Cho K.H., Park J.E., Osaka T. and Park S.G. (2005) Electrochim. Acta 51:956–960CrossRefGoogle Scholar
  3. Fu G., Vary P.S., Lin C.T. (2005) J. Phys. Chem. B 109:8889–8898CrossRefGoogle Scholar
  4. Hewitt C.J., Bellara S.T., Andreani A., Nebe-von-Caron G. and Mcfarlane C.M. (2001) Biotechnol. Lett. 23:667–675CrossRefGoogle Scholar
  5. Leermakers F.A.M. and Nelson A. (1990) Antimicrobial effect of surgical masks coated with nanoparticles J. Electroanal. Chem. 278:53–72CrossRefGoogle Scholar
  6. Li Y., Leung P., Yao L., Song Q.W. and Newton E. (2006) J. Hosp. Infect. 62:58–63CrossRefGoogle Scholar
  7. Makhluf S., Dror R., Nitzan Y., Abramovich Y., Jelinek R. and Gedanken A. (2005) Adv. Funct. Mater. 15:1708–1715CrossRefGoogle Scholar
  8. Nelson A., Geddes N. and Tattersall J. (2001) Cell. Mol. Biol. Lett. 6:319–326Google Scholar
  9. Neville F., Cahuzac M., Nelson A. and Gidalevitz D. (2004) J. Phys., Condens. Matter 16:S2413–S2420CrossRefGoogle Scholar
  10. Roselli M., Finamore A., Garaguso I., Britti M.S. and Mengheri E. (2003) J. Nutr. 133:4077–4082Google Scholar
  11. Sawai J., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M. (1995a) J. Chem. Eng. Japan 28:288–293CrossRefGoogle Scholar
  12. Sawai J., Saito I., Kanou F., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M. (1995b) J. Chem. Eng. Japan 28:352–354CrossRefGoogle Scholar
  13. Sawai J., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M.(1996a) J. Chem. Eng. Japan 29:251–256CrossRefGoogle Scholar
  14. Sawai J., Kawada E., Kanou F., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M. (1996b) J. Chem. Eng. Japan 29:627–633CrossRefGoogle Scholar
  15. Sawai J., Kojima H., Igarashi H., Hashimoto A., Shoji S., Takehara A., Sawaki T, Kokugan T. and Shimizu M. (1997) J. Chem. Eng. Japan 30:1034–1039CrossRefGoogle Scholar
  16. Sawai J., Shoji S., Igarashi H., Hashimoto A., Kokugan T., Shimizu M. and Kojima H. (1998) J. Ferment. Bioeng. 86:521–522CrossRefGoogle Scholar
  17. Sawai J. (2003) J. Microbiol. Methods 54:177–182CrossRefGoogle Scholar
  18. Schumacher K., S. Hasenzahl & M. Moerters, 2004. Powder mixture consisting of titanium dioxide, zinc oxide and zinc/titanium mixed oxide. Patent WO2004056706Google Scholar
  19. Sheng C. and Liu F. (2004) Powder Technol. 145:20– 24CrossRefGoogle Scholar
  20. Stoimenov P.K., Klinger R.L., Marchin G.L. and Klabunde K.J. (2002) Langmuir 18:6679–6686CrossRefGoogle Scholar
  21. Wang Y.L., Wan Y.Z., Dong X.H., Cheng G.X., Tao H.M. and Wen T.Y. (1998) Carbon 36:1567–1571CrossRefGoogle Scholar
  22. Yamamoto O., Hotta M., Sawai J., Sasamoto T. and Kojima H. (1998) J. Ceram. Soc. Japan 106:1007–1011Google Scholar
  23. Yamamoto O. (2001a) Int. J. Inorgan. Mater. 3:643–646CrossRefGoogle Scholar
  24. Yamamoto O., Nakakoshi K., Sasamoto T., Nakagawa H. and Miura K. (2001b) Carbon 39:1643–1651CrossRefGoogle Scholar
  25. Yamamoto O. and Sawai J. (2001c) Bull. Chem. Soc. Japan 74:1761–1765CrossRefGoogle Scholar
  26. Yamamoto O., Sawai J. and Sasamoto T. (2000) International Int. J. Inorg. Mater. 2:451–454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Lingling Zhang
    • 1
  • Yunhong Jiang
    • 1
  • Yulong Ding
    • 1
  • Malcolm Povey
    • 2
  • David York
    • 3
  1. 1.Institute of Particle Science & EngineeringUniversity of LeedsLeedsUK
  2. 2.Procter Department of Food ScienceUniversity of LeedsLeedsUK
  3. 3.Procter and Gamble Newcastle Technical CentreNewcastle-upon-TyneUK

Personalised recommendations