Journal of Nanoparticle Research

, Volume 9, Issue 5, pp 853–860 | Cite as

The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation

Article

Abstract

The effects of liquid environment on nucleation, growth and aggregation of gold nanoparticles were studied. Gold nanoparticles were prepared by pulsed laser ablation in deionised water with various concentrations of ethanol and also in pure ethanol. UV/visible extinction and TEM observations were employed for characterization of optical properties and particle sizes respectively. Preparation in water results in smaller size, shorter wavelength of maximum extinction and stable solution with an average size of 6 nm. Nanoparticles in solution with low concentration ethanol up to 20 vol% are very similar to those prepared in water. In the mixture of deionised water and 40 up to 80 vol% ethanol, wavelength of maximum extinction shows a red shift and mean size of nanoparticles was increased to 8.2 nm. Meanwhile, in this case, nanoparticles cross-linked each other and formed string type structures. In ethanol, TEM experiments show a mean size of 18 nm and strong aggregation of nanoparticles. The data were discussed qualitatively by considering effects of polarity of surrounding molecules on growth mechanism and aggregation. This study provided a technique to control size, cross-linking and aggregation of gold nanoparticles via changing the nature of liquid carrier medium.

Keywords

laser ablation gold nanoparticle optical extinction colloids aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohren C.F., Huffman D.R. (1983) Absorption and Scattering of Light by Small Particles. Wiley, New YorkGoogle Scholar
  2. Chen G.X., Hong M.H., Lan B., Wang Z.B., Lu Y.F., Chong T.C. (2004) A Convenient way to prepare magnetic colloids by direct Nd:YAG laser ablation. Appl. Surf. Sci. 228: 169–175CrossRefGoogle Scholar
  3. Dolgave S.I., Simakin A.V., Voronov V.V., Shafeev G.A., Verduraz F.B. (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186: 546–551CrossRefGoogle Scholar
  4. Fu G., Cai W., Gan Y., Jia J. (2004) An ambience-induced optical absorption peak for Au/SiO2 mesoporous assembly. Chem. Phys. Lett. 385: 15–19CrossRefGoogle Scholar
  5. Hayens C.L., McFarland A.D., Zhao L., Duyne R.P.V., Schatz G.C., Gunnarsson L., Prikulis J., Kasemo B., Kall M. (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107: 7337–7342CrossRefGoogle Scholar
  6. Hodak J.H., Henglein A., Giersig M., Hartland G.V. (2000) Photophysics of nanometer sized metal particles: electron–phonon coupling and coherent excitation of breathing vibrational modes. J. Phys. Chem. B 104: 11708–11718CrossRefGoogle Scholar
  7. Huang Y., Li D., Li J. (2004) β-Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires. Chem. Phys. Lett. 389: 14–18CrossRefGoogle Scholar
  8. Inasawa S., Sugiyama M., Koda S. (2003) Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulse. Jpn. Appl. Phys. 42: 6705–6712CrossRefGoogle Scholar
  9. Liao J., Zhang Y., Xu W.Y.L., Ge C., Liu J. (2003a) Linear aggregation of gold nanoparticles in ethanol. Coll. Surf. A: Physicochem. Eng. Aspects 223: 177–183CrossRefGoogle Scholar
  10. Liao J.H., Chen K.J., Xu L.N., Ge C.W., Wang J., Huang L., Gu N. (2003b) Self-assembly of length-tunable gold nanoparticle chains in organic solvents. Appl. Phys. A. 76: 541–543CrossRefGoogle Scholar
  11. Link S., Mohamed M.B., El-sayed M.A. (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103: 3073–3077CrossRefGoogle Scholar
  12. Mafune F., Kohno J., Takeda Y., Kondow T. (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J. Phys. Chem. B 105: 9050–9056CrossRefGoogle Scholar
  13. Mafune F. (2004) Structural diagram of gold nanoparticles in solution under irradiation of UV pulse laser. Chem. Phys. Lett. 394: 133–137CrossRefGoogle Scholar
  14. Mafune F., Kohno J., Takeda Y., Kondow T. (2003) Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B. 107: 4218–4223CrossRefGoogle Scholar
  15. Norman T.J., Grant C.D., Schwartzberg A.M., Zhang J.Z. (2005) Structural correlations with shift in the extended plasma resonance of gold nanoparticle aggregates. Optical Mater. 27: 1197–1203CrossRefGoogle Scholar
  16. Mafune F., Kohno J., Takeda Y., Kondow T., Sawabe H. (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104: 9111–9117CrossRefGoogle Scholar
  17. Pileni M.P., 1998. Optical properties of nanosized particles dispersed in colloidal solution or arranged in 2D or 3D superlattices. New J. Chem. 22, 693–702Google Scholar
  18. Quintana M., Haro-Poniatowski E., Morales J., Batina N. (2002) Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 195: 175–186CrossRefGoogle Scholar
  19. Rao C.N.R., A. Muller & A.K. Cheetham, 2004. The Chemistry of Nanomaterials., Vol. 1., Wiley-VCHGoogle Scholar
  20. Sasaki T., Liang C., Nichols W.T., Shimizu Y., Koshizaki N. (2004) Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A. 79: 1489–1492CrossRefGoogle Scholar
  21. Seto T., Orii T., Hirasawa M., Aya N. (2003) Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation. Thin Solid Films 437: 230–234CrossRefGoogle Scholar
  22. Shim J.H., Lee B., Cho Y.W. (2002) Thermal stability of unsupported nanoparticle: a molecular dynamics study. Surf. Sci. 512: 262–268CrossRefGoogle Scholar
  23. Simakin A.V., Voronov V.V., Kirichenko N.A., Shafeev G.A. (2004) Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A 79: 1127–1132CrossRefGoogle Scholar
  24. Sun X., Dong S., Wang E. (2003) One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer 45: 2181–2184CrossRefGoogle Scholar
  25. Tarasenko N.V., Butsen A.V., Nevar E.A. (2005) Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids. Appl. Surf. Sci. 247: 418–422CrossRefGoogle Scholar
  26. Tilaki R.M., Iraji zad A., Mahdavi S.M. (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A 84: 215–219CrossRefGoogle Scholar
  27. Tsuji T., Iryo K., Watanabe N., Tsuji M. (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202: 80–85CrossRefGoogle Scholar
  28. Tsuji T., Hamagami T., Kawamura T., Yamaki J., Tsuji M. (2005) Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles. Appl. Surf. Sci. 243: 214–219CrossRefGoogle Scholar
  29. Ullmann M., Friedlander S.K., Schmidt-Ott A. (2002) Nanoparticle formation by laser ablation. J. Nanoparticles Res. 4: 499–509CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of PhysicsSharif University of TechnologyTehranIran
  2. 2.The Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations