Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 1033–1038 | Cite as

Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

  • Chien-Sheng Chen
  • Jie Yao
  • Richard A. DurstEmail author
Brief communication

Abstract

Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy.

Keywords

quantum dots silica nanoparticles fluorescence correlation spectroscopy liposomes encapsulation biological imaging nanomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn-Yoon S., DeCory T.R., Baeumner A.J., Durst R.A., (2003). Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Anal. Chem. 75:2256–2261CrossRefGoogle Scholar
  2. Alivisatos A.P., (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  3. Baeumner A. J., Pretz J., Fang S., (2004). A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal. Chem. 76:888–894CrossRefGoogle Scholar
  4. Barber K., Mala R. R., Lambert M. P., Qiu R. Z., MacDonald R. C., Klein W. L., (1996). Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci. Lett. 207:17–20CrossRefGoogle Scholar
  5. Chan W. C., Nie S., (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  6. Diederichs J. E., (1996). Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17:607–611CrossRefGoogle Scholar
  7. Esch M. B., Baeumner A. J., Durst R. A., (2001). Detection of Cryptosporidium parvum using oligonucleotide-tagged liposomes in a competitive assay format. Anal. Chem. 73:3162–3167CrossRefGoogle Scholar
  8. Goldman E. R., Anderson G. P., Tran P. T., Mattoussi H., Charles P. T., Mauro J. M., (2002). Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74:841–847CrossRefGoogle Scholar
  9. Ho J. A., Hsu H. W., Huang M. R., (2004). Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Anal. Biochem. 330:342–349CrossRefGoogle Scholar
  10. Kim S. A., Schwille P., (2003). Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr. Opin. Neurobiol. 13:583–590CrossRefGoogle Scholar
  11. Larson D. R., Heikal A., Ow H., Srivastava M., Wiesner U., Baird B., Webb W. W., (2003a). Development of fluorescent silica nanoparticles for biological imaging. Biophys. J. 84:586A–586AGoogle Scholar
  12. Larson D. R., Zipfel W. R., Williams R. M., Clark S. W., Bruchez M. P., Wise F. W., Webb W. W., (2003b). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436CrossRefGoogle Scholar
  13. Levin M. K., Carson J. H., (2004). Fluorescence correlation spectroscopy and quantitative cell biology. Differentiation 72:1–10CrossRefGoogle Scholar
  14. Maiti S., Haupts U., Webb W. W., (1997). Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl. Acad. Sci. USA 94:11753–11757CrossRefGoogle Scholar
  15. Mattoussi H., Radzilowski L. H., Dabbousi B. O., Thomas E. L., Bawendi M. G., Rubner M. F., (1998). Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83:7965–7974CrossRefGoogle Scholar
  16. Muller W. J., Zen K., Fisher A. B., Shuman H., (1995). Pathways for Uptake of Fluorescently Labeled Liposomes by Alveolar Type-Ii Cells in Culture. Am. J. Physiol. Lung Cell Mol. Physiol. 13:L11–L19Google Scholar
  17. Park S., Durst R. A., (2000). Immunoliposome sandwich assay for the detection of Escherichia coli O157:H7. Anal. Biochem. 280:151–158CrossRefGoogle Scholar
  18. Reynolds J. A., Nozaki Y., Tanford C., (1983). Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal. Biochem. 130:471–474CrossRefGoogle Scholar
  19. Rigler R., (1995). Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J Biotechnol 41:177–186Google Scholar
  20. Rodriguez-Viejo J., Mattoussi H., Heine J. R., Kuno M. K., Michel J., Bawendi M. G., Jensen K. F., (2000). Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites. J. Appl. Phys. 87:8526–8534CrossRefGoogle Scholar
  21. Schrock E., du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M. A., Ning Y., Ledbetter D. H., Bar-Am I., Soenksen D., Garini Y., Ried T., (1996). Multicolor spectral karyotyping of human chromosomes. Science 273:494–497CrossRefGoogle Scholar
  22. Siebert S. T. A., Reeves S. G., Durst R. A., (1993). Liposome immunomigration field assay device for Alachlor determination. Anal. Chim. Acta 282:297–305CrossRefGoogle Scholar
  23. Stober, W., A. Fink & E. Bohn, 1968. Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interf. Sci. 26, 62.Google Scholar
  24. Struck D. K., Pagano R. E., (1980). Insertion of fluorescent phospholipids into the plasma-membrane of a mammalian-cell. J. Biol. Chem. 255:5404–5410Google Scholar
  25. Trau D., Yang W., Seydack M., Caruso F., Yu N. T., Renneberg R., (2002). Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal. Chem. 74:5480–5486CrossRefGoogle Scholar
  26. Yang W., Zhang C. G., Qu H. Y., Yang H. H., Xu J. G., (2004). Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal. Chim. Acta 503:163–169CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Food Science & TechnologyCornell UniversityGenevaUSA
  2. 2.Department of Applied & Engineering PhysicsCornell UniversityIthacaUSA

Personalised recommendations