Advertisement

Journal of Nanoparticle Research

, Volume 9, Issue 3, pp 365–375 | Cite as

Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources

  • Chienchih Chen
  • Hsunling Bai
  • Sue-min Chang
  • Chungliang Chang
  • Walter Den
Article

Abstract

The nitrogen doped (N-doped) titanium dioxide (TiO2) photocatalyst was prepared by the atmospheric-pressure plasma-enhanced nanoparticles synthesis (APPENS) process operated under normal temperature, i.e. the dielectric barrier discharge plasma process. The N2 carrier gas is dissociated in the AC powered nonthermal plasma environment and subsequently doped into the TiO2 photocatalyst that was capable of being induced by visible light sources. The APPENS process for producing N-doped TiO2 showed a higher film deposition rate in the range of 60–94 nm/min while consuming less power (<100 W) as compared to other plasma processes reported in literatures. And the photocatalytic activity of the N-doped TiO2 photocatalyst was higher than the commercial ST01 and P25 photocatalysts in terms of toluene removals in a continuous flow reactor. The XPS measurement data indicated that the active N doping states exhibited N 1s binding energies were centered at 400 and 402 eV instead of the TiN binding at 396 eV commonly observed in the literature. The light absorption in the visible light range for N-doped TiO2 was also confirmed by a clear red shift of the UV-visible spectra.

Keywords

titania photocatalytic reaction plasma process dielectric barrier discharge nitrogen doping visible light irradiation isopropanol toluene nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the supports from the National Science Council, Taiwan, through grant numbers NSC 91-2211-E-009-012, 92-2211-E-009-017 and 93-2211-E-009-018.

References

  1. Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  2. Bai H., Chen C., Lin C.-H., Den W., Chang C. (2004). Monodisperse nanoparticle synthesis by an atmospheric pressure plasma process: an example of a visible light photocatalyst. Industrial Eng. Chem. Res. 43:7200–7203CrossRefGoogle Scholar
  3. Battison G.A., Gerbasi R., Gregori A., Porchia M., Cattarin S., Rizzi G.A. (2000). PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition. Thin Solid Films 371:126–131CrossRefGoogle Scholar
  4. Chen X., Lou Y., Samia A.C.S., Burda C., Gole J.L. (2005). Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv. Funct. Mat. 15:41–49CrossRefGoogle Scholar
  5. Chen X., Burda C. (2004). Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 108:15446–15449CrossRefGoogle Scholar
  6. d’Hennezel O., Pichat P., Ollis D.F. (1998). Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretreated TiO2: by products and mechanisms. J. Photochem. Photobiol. A 118:197–204CrossRefGoogle Scholar
  7. Diwald O., Tracy L.T., Tykhon Z., Goralski Ed.G., Scott Walck D., John Yates T. Jr. (2004). Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J. Phys. Chem. B 108:6004–6008CrossRefGoogle Scholar
  8. Francisco H.I., Berns R.S., Tzeng Di-Y. (2000). A comparative analysis of spectral reflectance estimated in various spaces using a trichromatic camera system. J. Imaging Sci. Technol. 44:280–287Google Scholar
  9. Fujishima A., Rao T.N., Tryk D.A. (2000). Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1:1–21CrossRefGoogle Scholar
  10. György E., del Pino A.P., Serra, Morenza J.L. (2003). Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol. 173:265–270CrossRefGoogle Scholar
  11. Ihara T., Miyoshi M., Iriyama Y., Matsumoto M., Sugihara S. (2003). Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B 42:403–409CrossRefGoogle Scholar
  12. Irie H., Watanabe Y., Hashimoto K. (2003). Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 107:5483–5486CrossRefGoogle Scholar
  13. Jill C. (eds) (1992). Handbook of X-ray Photoelectron Spectroscopy. Perkin–Elmer Corporation, Minnesota, pp 43Google Scholar
  14. Li D., Haneda H., Hishita S., Ohashi N. (2005a). Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mat. 17:2596–2602CrossRefGoogle Scholar
  15. Li D., Haneda H., Hishita S., Ohashi N. (2005b). Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Mat. Sci. Eng. B 117:67–75CrossRefGoogle Scholar
  16. Livraghi S., Votta A., Paganini M.C., Giamello E. (2005). The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chem. Commun. 4:498–500CrossRefGoogle Scholar
  17. Maeda M., Watanabe T. (2006). Visible light Photocatalysis of Nitrogen-diped oxide films prepared by plasma-enhanced chemical vapor deposition. J. Electrochem. Soc. 153(3):C187–C189CrossRefGoogle Scholar
  18. Miao L., Tanemura S., Watanabe H., Mori Y., Kaneko K., Toh S. (2004). The improvement of optical reactivity for TiO2 thin films by N2-H2 plasma surface-treatment. J. Crystal Growth 260:118–124CrossRefGoogle Scholar
  19. Musić S., M. Gotić, Ivanda M., S. Popvić, A. Turković, Trojko R., A. Sekulić, Furić K. (1997). Chemical and microstructural properties of TiO2 synthesized by sol–gel procedure. Mat. Sci. Eng. B 47:33–40CrossRefGoogle Scholar
  20. Nosaka Y., Matsushita M., Nishino J., Nosaka A.Y. (2005). Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Sci. Technol. Adv. Mat. 6:143–148CrossRefGoogle Scholar
  21. Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M. (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 265:115–121CrossRefGoogle Scholar
  22. Sakatani Y., Ando H., Okusako K., Koike H. (2004). Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mat. Res. 19:2100–2108CrossRefGoogle Scholar
  23. Suda Y., Kawasaki H., Ueda T., Ohshima T. (2005). Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films 475:337–341CrossRefGoogle Scholar
  24. Wu P.-G., Ma C.-H., Shang J.K. (2005). Effects of nitrogen doping on optical properties of TiO2 thin films. Appl. Phys. A 81:1411–1417CrossRefGoogle Scholar
  25. Yang M.-C., Yang T.-S., Wong M.-S. (2004a). Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films 469–470:1–5CrossRefGoogle Scholar
  26. Yang T.-S., Shiu C.-B., Wong M.-S. (2004b). Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation. Surf. Sci. 548:75–82CrossRefGoogle Scholar
  27. Yin S., Aita Y., Komatsu M., Wang J., Tang Q., Sato T. (2005). Synthesis of excellent visible-light responsive TiO2-xNy photocatalyst by a homogeneous precipitation-solvothermal process. J. Mat. Chem. 15:674–682CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Chienchih Chen
    • 1
  • Hsunling Bai
    • 1
  • Sue-min Chang
    • 1
  • Chungliang Chang
    • 2
  • Walter Den
    • 3
  1. 1.Institute of Environmental EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Department of Environmental Engineering and HealthYuanpei Institute of Science and TechnologyHsinchuTaiwan
  3. 3.Department of Environmental Science and EngineeringTunghai UniversityTaichungTaiwan

Personalised recommendations