Advertisement

Journal of Nanoparticle Research

, Volume 9, Issue 2, pp 261–268 | Cite as

Selective Synthesis of Mesoporous and Nanorod CeVO4 without Template

  • Ling Zhu
  • Qin Li
  • Jiayan Li
  • Xiangdong Liu
  • Jian Meng
  • Xueqiang CaoEmail author
Technology and Applications

Abstract

A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)3 and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)3, V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m2 g−1 and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100–150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) were applied for characterization of the as-prepared products.

Keywords

sonochemistry cerium orthovanadate nanorod mesoporous aqueous medium colloids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors thank Mr. K. Y. Yang for his skillful measurement on BET. This work was financially supported by NSFC-20471058.

References

  1. Brixner L.H., Abramson E. (1965) On the luminescent properties of the rare vanadates. J. Electrochem. Soc. 112:70–74CrossRefGoogle Scholar
  2. Cao X., Koltypin Yu., Prozorov R., Katabya G., Gedanken A. (1997) Preparation of amorphous Fe2O3 powder with different particle sizes. J. Mater. Chem. 7:2447–2451CrossRefGoogle Scholar
  3. Dhas N.A., Suslik K.S. (2005) Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc. 127:2368–2369CrossRefGoogle Scholar
  4. Erdei S. (1995) Preparation of YVO4 powder from the Y2O3 + V2O5 + H2O system by a hydrolyzed colloid reaction (HCR) technique. J. Mater. Sci. 30:4950–4959CrossRefGoogle Scholar
  5. Fang Z.M., Hong Q., Zhou Z.H., Dai S.J., Weng W.Z., Wan H.L. (1999) Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal. Lett. 61:39–44CrossRefGoogle Scholar
  6. Gedanken A. (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11:47–55CrossRefGoogle Scholar
  7. Gregg S.J., Sing K.S.W. (1982) Adsorption Surface Area, and Porosity. Academic Press Ltd, London, 111Google Scholar
  8. Krasovec U.O., Orel B., Surca A., Bukovec N., Reisfeld R. (1999) Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol–gel derived ion-storage films. Solid State Ionics 118:195–214CrossRefGoogle Scholar
  9. Li K.T., Chi Z.H. (2001) Selective oxidation of hydrogen sulfide on rare earth orthovanadates and magnesium vanadates. Appl. Catal. A: Gen. 206:197–203CrossRefGoogle Scholar
  10. Luo F., Jia C.J., Song W., You L.P., Yan C.H. (2005) Chelating ligand-mediated crystal growth of cerium orthovanadate. Cryst. Growth. Des. 5:137–142CrossRefGoogle Scholar
  11. Nelson A.E., Schulz K.H. (2003) Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces. Appl. Surf. Sci. 210:206–221CrossRefGoogle Scholar
  12. Perkas N., Palchik O., Brukental I., Nowik I., Gofer Y., Koltypin Y., Gedanken A. (2003) A Mesoporous iron–titanium oxide composite prepared sonochemically. J. Phys. Chem. B. 107:8772–8778CrossRefGoogle Scholar
  13. Picardi G., Varsano F., Decker F., Opara-Krasovec U., Surca A., Orel B. (1999) Electrochemical characterization Electrochim. Acta 44:3157–3164CrossRefGoogle Scholar
  14. Pol V.G., Palchik O., Gedanken A., Felner I. (2002) Synthesis of europium oxide nanorods by ultrasound irradiation. J. Phys. Chem. B 106:9737–9743CrossRefGoogle Scholar
  15. Salvi A.M., Decker F., Varsano F., Speranza G. (2001) Use of XPS for the study of cerium–vanadium (electrochromic) mixed oxides. Surf. Interface Anal. 31:255–264CrossRefGoogle Scholar
  16. Sherif F.G., 1988. Via, F. A. U.S. Pat., 4764357, o Akzo America IncGoogle Scholar
  17. Srivastava D.N., Chappel S., Palchik O., Zaban A., Gedanken A. (2002a) Sonochemical synthesis of mesoporous tin oxide. Langmuir 18:4160–4164CrossRefGoogle Scholar
  18. Srivastava D.N., Perkas N., Zaban A., Gedanken A. (2002b) Sonochemistry as a tool for preparation of porous metal oxides. Pure Appl. Chem. 74:1509–1517Google Scholar
  19. Suslick K.S. (1988) Ultrasound: Its Chemical, Physical and Biological Effects. VCH, Weinheim, GermanyGoogle Scholar
  20. Tsipis E.V., Patrakeev M.V., Kharton V.V., Vyshatko N.P., Frade J.R. (2002) Ionic and p-type electronic transport in zircon-type Ce1-xAxVO4±δ(A = Ca, Sr). J. Mater. Chem. 12:3738–3745CrossRefGoogle Scholar
  21. Wang H., Meng Y.Q., Yan H. (2004) Rapid synthesis of nanocrystalline CeVO4 by microwave irradiation. Inorg. Chem. Commun. 7: 553–555CrossRefGoogle Scholar
  22. Wang Y.Q., Tang X.H., Yin L.X., Huang W.P., Hacohen Y.R., Gedanken A. (2000) Sonochemical synthesis of mesoporous titanium oxide with Wormhole-like framework structures. Adv. Mater. 12:1183–1186CrossRefGoogle Scholar
  23. Wang Y.Q., Yin L.X., Gedanken A. (2002) Sonochemical synthesis of mesoporous transition metaland rare earth oxides. Ultrason. Sonochem. 9:285–290CrossRefGoogle Scholar
  24. Wang L., Muhammed M. (1999) Synthesis of zinc oxide nanoparticles with controlled morphology. J. Mater. Chem. 9:2871–2878CrossRefGoogle Scholar
  25. Watanabe A. (2000) Highly conductive oxides, CeVO4, Ce1-xMxVO4-0.5x(M = Ca, Sr, Pb) and Ce1-yBiyVO4, with zircon-type structure prepared by solid-state reaction in air. Chem. 153:174–179CrossRefGoogle Scholar
  26. Yin L.X., Wang Y.Q., Pang G.S., Koltypin Yu., Gedanken A. (2002) Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. J. Coll. Interface Sci. 246:78–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ling Zhu
    • 1
    • 2
  • Qin Li
    • 1
    • 2
  • Jiayan Li
    • 1
    • 2
  • Xiangdong Liu
    • 1
    • 2
  • Jian Meng
    • 1
  • Xueqiang Cao
    • 1
  1. 1.Key Lab of Rare Earth Chemistry & Physics, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchun, JilinChina
  2. 2.Graduate School of The Chinese Academy of SciencesBeijingChina

Personalised recommendations