Journal of Nanoparticle Research

, Volume 9, Issue 3, pp 389–402 | Cite as

Large influence of the synthesis conditions on the physico-chemical properties of nanostructured Fe3O4

  • S. Franger
  • P. Berthet
  • O. Dragos
  • R. Baddour-Hadjean
  • P. Bonville
  • J. Berthon
Article

Abstract

Magnetite synthesized via three different synthesis routes (coprecipitation process in aqueous media, electrochemical synthesis in presence of complexing agents and solid state reaction at high temperature) has been characterized by X-Ray diffraction, scanning electron microscopy, thermal analysis (TGA), FT-IR and Mössbauer spectroscopies. Although each procedure gave homogeneous magnetite powders, many differences could be seen in the physico-chemical properties of the samples mostly depending on the synthesis conditions. For instance, at least two factors seem to have a huge impact onto the Fe3O4 behaviour: the presence of hydration water molecules and the particle size of the powders since a superparamagnetic behaviour was observed with the thinnest particles, at room temperature, on the Mössbauer spectra via the appearance of line broadening and a pronounced central doublet.

Keywords

Fe3O4 nanoparticles soft chemistry electrosynthesis non-stoichiometry FT-IR Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean C.P., Livingston J.D. (1959) J. Appl. Phys. 30:120SCrossRefGoogle Scholar
  2. Brousse T., Bélanger D. (2003) Electrochem. Solid State Lett. 6:A244CrossRefGoogle Scholar
  3. Chen D., Xu R. (1998) Mater. Res. Bull. 33:1015CrossRefGoogle Scholar
  4. Couling S.B. & S. Mann, 1985. J. Chem. Soc. 23, 1713Google Scholar
  5. Darken L.S., Gurry R.W. (1946) J. Am. Chem. Soc. 68:798CrossRefGoogle Scholar
  6. Diandra L.L., Reuben D.R. (1996) Chem. Mater. 8:1770CrossRefGoogle Scholar
  7. Elmore W.C. (1938) Phys. Rev. 54:309CrossRefGoogle Scholar
  8. Franger S., Bach S., Pereira-Ramos J-P., Baffier N. (2000) J. Electrochem. Soc. 147:3226CrossRefGoogle Scholar
  9. Franger S., Bach S., Farcy J., Pereira-Ramos J-P., Baffier N. (2002) J. Power Sources 109:262CrossRefGoogle Scholar
  10. Franger S., Berthet P., Berthon J., (2004) J. Solid State Electrochem. 8:218CrossRefGoogle Scholar
  11. Hsu J.H., Chen S.Y., Chang C.R. (2002) J. Magn. Magn. Mater. 242–245:479CrossRefGoogle Scholar
  12. Jolivet J-P., Massart R., Fruchart J-M. (1983) Nouv. J. Chim. 7:325Google Scholar
  13. Jolivet J-P., Belleville P., Tronc E., Livage J. (1992) Clays Clay Miner. 40:531CrossRefGoogle Scholar
  14. Khollam Y.B., Dhage S.R., Potdar H.S., Deshpande S.B., Bakare P.P., Kulkarni S.D., Date S.K. (2002) Mater. Lett. 56:571Google Scholar
  15. Kiyama M. (1974) Bull. Chem. Soc. Jpn. 47:1646CrossRefGoogle Scholar
  16. Klug H.P. & L.E. Alexander, 1974. X-Ray diffraction procedures for polycrystalline and amorphous materials. 2nd edn. Wiley Interscience.Google Scholar
  17. Koltsov D., Perry M. (2004) Physicians World 7:31Google Scholar
  18. Liu Z., Zhang D., Han S., Li C., Lei B., Lu W., Fang J., Zhou C. (2005) J. Am. Chem. Soc. 127:6CrossRefGoogle Scholar
  19. Livage J. (1996) Solid State Ionics 86–88:935CrossRefGoogle Scholar
  20. Livage J., Beteille F., Roux C., Chatry M., Davidson P. (1998) Acta Mater. 46:743CrossRefGoogle Scholar
  21. Massart R., (1980) C. R. Acad. Sci. Paris 291C:1Google Scholar
  22. Morup S., Topsoe H., Lipka J. (1976) J. Physique 37:C6-287Google Scholar
  23. Nedkov I., Merodiiska T., Kolev S., Krezhov K., Niarchos D., Moraitakis E., Kusano Y., Takada J. (2002) Monatshefte für Chemie 133:823Google Scholar
  24. Olowe A.A., Génin J.M.R. (1991) Corros. Sci. 2:965CrossRefGoogle Scholar
  25. Olowe A.A., Pauron B., Génin J.M.R. (1991) Corrosion Sci. 2:985CrossRefGoogle Scholar
  26. Palosz B., Stel’makh S., Grzanka E., Gierlotha S., Pielaszek R., Bismayer U., Werner S., Palosz W. (2004) J. Phys. Condens. Matter 16(5):S353CrossRefGoogle Scholar
  27. Petzold W., Petzold A. (1958) Z. Anal. Chem. 161:241CrossRefGoogle Scholar
  28. Riegel E.R., Schwartz R.D. (1952) Anal. Chem. 14:1803CrossRefGoogle Scholar
  29. Siles-Dotor M.G., Morales A., Benaissa M., Cabral-Prieto A. (1997) Nanostruct. Mater. 8:657CrossRefGoogle Scholar
  30. Tronc E., Jolivet J-P., Massart R., (1982) Mater. Res. Bull. 17:1365CrossRefGoogle Scholar
  31. Tronc E., Belleville P., Jolivet J-P., Livage J., (1992) Langmuir 8:313CrossRefGoogle Scholar
  32. Tsouris C., Depaoli D.W., Shor J.T., Hu M.Z.-C., Ying T.-Y. (2001) Colloids Surf. A 177:233Google Scholar
  33. Visalakshi G., Venkateswaran G., Kulshreshtha S.K., Moorty P.N. (1993) Mater. Res. Bull. 28:829CrossRefGoogle Scholar
  34. Wan S., Huang J., Yan H., Liu K. (2006) J. Mater. Chem. 16:298CrossRefGoogle Scholar
  35. Wang L., Li J., Ding W., Zhou T., Liu B., Zhong W., Wu J., Du Y. (1999) J. Magn. Magn. Mater. 207:111CrossRefGoogle Scholar
  36. Wang J., Sun J., Sun Q., Chen Q. (2003) Mater. Res. Bull. 38:1113CrossRefGoogle Scholar
  37. Yamamoto A., Honmyo T., Hosoito N., Kiyama M., Shinjo T. (1993) Nucl. Instrum. Methods B 76:202CrossRefGoogle Scholar
  38. Zaïtsev V.S., Filimonov D.S., Presnyakov I.A., Gambino R.J., Chu B. (1999) J. Colloid Interface Sci. 212:49CrossRefGoogle Scholar
  39. Ziese M., Höhne R., Hong N.H., Dienelt J., Zimmer K., Esquinazi P. (2002) J Magn Magn Mater 242–245:450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. Franger
    • 1
  • P. Berthet
    • 1
  • O. Dragos
    • 1
  • R. Baddour-Hadjean
    • 2
  • P. Bonville
    • 3
  • J. Berthon
    • 1
  1. 1.Laboratoire de Physico-Chimie de l’Etat Solide, UMR CNRS 8182 ICMMOUniversité Paris XIOrsayFrance
  2. 2.Laboratoire de Dynamique, Interactions et Réactivité, UMR CNRS 7075 ISCSAUniversité Paris VIThiaisFrance
  3. 3.Laboratoire de Spectrométrie Mössbauer DSM/DRECAM/SPEC CEACentre d’Etudes de SaclayGif-sur-YvetteFrance

Personalised recommendations