Journal of Nanoparticle Research

, Volume 8, Issue 5, pp 729–736 | Cite as

Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

Brief communication


Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.


bismuth metal nanoparticle flame spray reducing flame synthesis nanocrystalline metal combustion nanoengineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alivisatos A.P. (1996). Science 271:933–937CrossRefGoogle Scholar
  2. Arabi-Katbi O.I., Pratsinis S.E., Morrison P.W., Megaridis C.M. (2001). Comb. Flame 124:560CrossRefGoogle Scholar
  3. Balan L., Schneider R., Billaud D., Fort Y., Ghanbaja J. (2004) Nanotechnology 15:940CrossRefGoogle Scholar
  4. Baribeau J.M., Rowell N.L., Lockwood D.J. (2005). J. Mater. Res. 20:3278CrossRefGoogle Scholar
  5. Black, M.R., Y.M. Lin, S.B. Cronin, O. Rabin & M.S.␣Dresselhaus, 2002. Phys. Rev. B 65Google Scholar
  6. Brochin F., Devaux X., Ghanbaja J., Scherrer H. (1999). Nanostruct. Mater. 11:1CrossRefGoogle Scholar
  7. Chen I.W., Wang X.H. (2000). Nature 404:168CrossRefGoogle Scholar
  8. Costa-Krämer J.L., García N., Olin H. (1997). Phys. Rev. B 55:12910CrossRefGoogle Scholar
  9. Dellinger T.M., Braun P.V., (2004). Chem. Mat. 16:2201CrossRefGoogle Scholar
  10. Dresselhaus M.S., Dresselhaus G., Sun X., Zhang Z., Cronin S.B., Koga T. (1999). Phys. Solid State 41:679CrossRefGoogle Scholar
  11. Fang J.Y., Stokes K.L., Wiemann J., Zhou W.L. (2000). Mater. Lett. 42:113CrossRefGoogle Scholar
  12. Fang, J.Y., K.L. Stokes, W.L.L. Zhou, W.D. Wang & J. Lin, 2001. Chem. Commun. 1872Google Scholar
  13. Foos E.E., Stroud R.M., Berry A.D., Snow A.W., Armistead J.P. (2000). J. Am. Chem. Soc. 122:7114CrossRefGoogle Scholar
  14. Fu R.L., Xu S., Lu Y.N., Zhu J.J. (2005). Cryst. Growth Des. 5:1379CrossRefGoogle Scholar
  15. Gallo C.F., Chandrasekhar B.S., Sutter P.H. (1963). J. Appl. Phys. 34:144CrossRefGoogle Scholar
  16. Giesen B., Orthner H.R., Kowalik A., Roth P. (2004). Chem. Eng. Sci. 59:2201CrossRefGoogle Scholar
  17. Grass, R.N., E.K. Athanassiou & W.J. Stark, 2005. EP Patent application 05 019287.1Google Scholar
  18. Grass, R.N. & W.J. Stark, 2005. Chem. Commun. 1767Google Scholar
  19. Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E. (2002). Science 297:2229CrossRefGoogle Scholar
  20. Height M.J., Howard J.B., Tester J.W., Sande J.B.V. (2004) Carbon 42:2295CrossRefGoogle Scholar
  21. Heremans J., Thrush C.M., Lin Y.M., Cronin S., Zhang Z., Dresselhaus M.S., Mansfield J.F. (2000). Phys. Rev. B 61:2921CrossRefGoogle Scholar
  22. Huber, M., W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich & A. Baiker, 2005. Chem. Commun. 648Google Scholar
  23. Johannessen T., Jenson J.R., Mosleh M., Johansen J., Quaade U., Livbjerg H. (2004). Chem. Eng. Res. Des. 82:1444CrossRefGoogle Scholar
  24. Jossen R., Pratsinis S.E., Stark W.J., Madler L. (2005). J. Am. Ceram. Soc. 88:1388CrossRefGoogle Scholar
  25. Keskinen H., Makela J.M., Vippola M., Nurminen M., Liimatainen J., Lepisto T., Keskinen J. (2004). J. Mater. Res. 19:1544CrossRefGoogle Scholar
  26. Knipping J., Wiggers H., Kock B.F., Hulser T., Rellinghaus B., Roth P. (2004). Nanotechnology 15:1665CrossRefGoogle Scholar
  27. Kruis F.E., Fissan H., Peled A. (1998). J. Aerosol. Sci. 29:511CrossRefGoogle Scholar
  28. Laine R.M., Marchal J., Sun H.P., Pan X.Q. (2005). Adv. Mater. 17:830CrossRefGoogle Scholar
  29. Lide D.R., 1997. CRC Handbook of Chemistry and Physics, 78th edn. CRC PressGoogle Scholar
  30. Loher S., Stark W.J., Maciejewski M., Baiker A., Pratsinis S.E., Reichhardt D., Maspero F., Krumeich F., Günther D. (2005). Chem. Mater. 17:36CrossRefGoogle Scholar
  31. Madler L., Kammler H.K., Mueller R., Pratsinis S.E., (2002a). J. Aerosol. Sci. 33:369CrossRefGoogle Scholar
  32. Madler L., Pratsinis S.E. (2002). J. Am. Ceram. Soc. 85:1713CrossRefGoogle Scholar
  33. Madler L., Stark W.J., Pratsinis S.E. (2002b). J. Mater. Res. 17:1356Google Scholar
  34. Madler L., Stark W.J., Pratsinis S.E. (2002c). J. Appl. Phys. 92:6537CrossRefGoogle Scholar
  35. Makela J.M., Keskinen H., Forsblom T., Keskinen J. (2004). J. Mater. Sci. 39:2783CrossRefGoogle Scholar
  36. Moisala A., Nasibulin A.G., Kauppinen E.I. (2003). J. Phys.-Condes. Matter 15:S3011CrossRefGoogle Scholar
  37. Mueller R., Madler L., Pratsinis S.E. (2003). Chem. Eng. Sci. 58:1969CrossRefGoogle Scholar
  38. Nasibulin A.G., Ahonen P.P., Richard O., Kauppinen E.I., Altman I.S. (2001). J. Nanopart. Res. 3:385CrossRefGoogle Scholar
  39. Nasibulin A.G., Shurygina L.I., Kauppinen E.I. (2005). Colloid J. 67:1Google Scholar
  40. Rosner D.E. (2005). Ind. Eng. Chem. Res. 44:6045CrossRefGoogle Scholar
  41. Sanders P.G., Youngdahl C.J., Weertman J.R. (1997). Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 234:77Google Scholar
  42. Sandler S.I. (1999). Chemical and Engineering Thermodynamics. John Wiley & Sons, New YorkGoogle Scholar
  43. Sandhu A., Kurosawa K., Dede M., Oral A. (2004). Jpn. J. Appl. Phys. Part 1 43:777CrossRefGoogle Scholar
  44. Schiotz J., Vegge T., Di Tolla F.D., Jacobsen K.W. (1999). Phys. Rev. B 60:11971CrossRefGoogle Scholar
  45. Stark W.J., Grunwaldt J.D., Maciejewski M., Pratsinis S.E., Baiker A. (2005). Chem. Mat. 17:3352CrossRefGoogle Scholar
  46. Stark W.J., L. Madler, M. Maciejewski, S.E. Pratsinis & A.␣Baiker 2003. Chem. Commun. 588–589Google Scholar
  47. Suh Y.J., Jang H.D., Chang H.K., Hwang D.W., Kim H.C. (2005). Mater. Res. Bull. 40:2100CrossRefGoogle Scholar
  48. Suryanarayana C. (1995). Int. Mater. Rev. 40:41Google Scholar
  49. Toprak M.S., Zhang Y., Jo Y., Kim D.K., Muhammed M. (2005). Solid State Phenom. 101–102:197CrossRefGoogle Scholar
  50. Tsantilis S., Kammler H.K., Pratsinis S.E. (2002). Chem. Eng. Sci. 57:2139–2156CrossRefGoogle Scholar
  51. Vander Wal R.L., Ticich T.M., Curtis V.E. (2000). Chem. Phys. Lett. 323:217CrossRefGoogle Scholar
  52. Wang Y.W., Hong B.H., Kim K.S. (2005). J. Phys. Chem. B 109:7067CrossRefGoogle Scholar
  53. Wegner K., Walker B., Tsantilis S., Pratsinis S.E. (2002). Chem. Eng. Sci. 57:1753CrossRefGoogle Scholar
  54. Zachariah M.R., Huzarewicz S. (1991). Combust. Flame 87:100CrossRefGoogle Scholar
  55. Zhao Y.B., Zhang Z.J., Dang H.X. (2004). Mater. Lett. 58:790CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Chemical and Bioengineering, ETH ZürichZurichSwitzerland

Personalised recommendations