Journal of Nanoparticle Research

, Volume 9, Issue 3, pp 427–440 | Cite as

Photochemical synthesis of ZnO/Ag nanocomposites

  • V. V. Shvalagin
  • A. L. Stroyuk
  • S. Ya. Kuchmii
Article

Abstract

Composite ZnO/Ag nanoparticles have been formed via the photocatalytic reduction of silver nitrate over the ZnO nanocrystals, their optical, electrophysical and photochemical properties have been investigated. Mie theory has been applied to analyze the structure of the absorption spectra of ZnO/Ag nanocomposite. The irradiation effects upon the optical properties of ZnO/Ag nanostructure have been investigated. It has been found that the irradiation of ZnO/Ag nanoparticles results in electrons accumulation by both the semiconductor and the metallic components of the nanocomposite. It has been found that silver nitrate can be photochemically deposited onto the surface of ZnO nanoparticles under the illumination with the visible light in the presence of the sensitizer – methylene blue. Kinetics of the sensitized Ag(I) photoredution has been studied. It has been concluded that the key stage of this process is the electron injection from singlet-excited methylene blue molecule into ZnO nanoparticle.

Keywords

semiconductor photocatalysis ZnO nanoparticles silver nanoparticles Mie theory metal-semiconductor composites plasmon resonance sensitization methylene blue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albery J.W. (1985). Time-resolved photoredox reactions of colloidal CdS. J. Chem. Soc., Faraday Trans. 1 81: 1999–2007Google Scholar
  2. Bahnemann D.W., Kormann C., Hoffmann M.R. (1987). Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 91: 3789–3795CrossRefGoogle Scholar
  3. Beydoun D., Amal R., Low G., McEvoy S. (1999). Role of nanoparticles in photocatalysis. J. Nanoparticle Res. 1: 439–458CrossRefGoogle Scholar
  4. Cozzoli P.D., Fanizza E., Comparelli R., Curri M.L., Agostiano A. (2004). Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. J. Phys. Chem. B 108: 9623–9630Google Scholar
  5. Doremus R.H. (1965). Optical properties of small silver particles. J. Chem. Phys. 42: 414–417CrossRefGoogle Scholar
  6. Henglein A. (1993). Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and atom-to-metal transition. J. Phys. Chem. 97: 5457–5471CrossRefGoogle Scholar
  7. Henglein A. (1997). Nanoclusters of semiconductors and metals. Colloidal nanoparticles of semiconductors and metals: Electronic structure and processes. Ber. Bunsenges. Phys. Chem. 101: 1562–1569Google Scholar
  8. Henglein A. (1998). Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater. 10: 444–450CrossRefGoogle Scholar
  9. Hoyer P., Weller H. (1995). Potential-dependent electron injection in nanoporous colloidal ZnO films. J. Phys. Chem. 99: 14096–14100CrossRefGoogle Scholar
  10. James T.H. (1977). The Theory of Photographic Process. Macmillan Publishing Co., New York, LondonGoogle Scholar
  11. Kamat P.V., Dimitrijevic N.M., Nozik A.J. (1989). Dynamic Burstein-Moss shift in semiconductor colloids. J. Phys. Chem. 93: 2873–2875CrossRefGoogle Scholar
  12. Khairutdinov R.F. (1998). Chemistry of semiconductor nanoparticles. Russ. Chem. Rev. 67: 125–128CrossRefGoogle Scholar
  13. Kryukov A.I., Kuchmii S.Ya., Pokhodenko V.D. (2000). Energetics of the electronic processes in semiconductor photocatalytic systems. Theoret. Experim. Chem. 36: 69–87Google Scholar
  14. Kamat P.V. (2002). Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106: 7729–7744CrossRefGoogle Scholar
  15. Kulak A.I., 1986. Electrochemistry of semiconductor heterostructures, Minsk, UniversitetskoyeGoogle Scholar
  16. Lee S.K. & A. Mills, 2003. Novel photochemistry of leuco-methylene blue. Chem. Comm., 2366Google Scholar
  17. Liu C., Bard A.J. (1989). Effect of excess charge on band energetics (optical absorption edge and carrier redox potential) in small semiconductor particles. J. Phys. Chem. 93: 3232–3237CrossRefGoogle Scholar
  18. Moelwyn-Hughes E.A. (1961). Physical chemistry, Vol. II. Pergamon Press, London, New York, ParisGoogle Scholar
  19. Noack V., Weller H., Eychmueller A. (2002). Transport of a charge carrier packet in nanoparticulate ZnO electrodes. J. Phys. Chem. B 106: 384–394CrossRefGoogle Scholar
  20. Patrick B., Kamat P.V. (1992). Photophysics and photochemistry of quantized ZnO colloids. J. Phys. Chem. 96: 1423–1427CrossRefGoogle Scholar
  21. Pesika N.S., Stebe K.J., Searson P.C (2003). Relationship between absorbance spectra and particle size distributions for quantum-Sized nanocrystals. J. Phys. Chem. B 107: 10412–10416CrossRefGoogle Scholar
  22. Pileni M.P., 1998. Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices. New J. Chem. 693–702Google Scholar
  23. Shim M., Guyot-Sionnest P. (2001). Organic-capped ZnO nanocrystals: Synthesis and n-type character. J. Am. Chem. Soc. 123: 11651–11654CrossRefGoogle Scholar
  24. Skillman D.C., Berry C.R. (1968). Effect of particle shape on the spectral absorption of colloidal silver in gelatine. J. Chem. Phys. 48: 3297CrossRefGoogle Scholar
  25. Stenzel O. (1999). Optical properties of noble metal clusters in ultra thin solid films. J. Cluster. Sci. 10: 169–193CrossRefGoogle Scholar
  26. Stroyuk A.L., Kryukov A.I., Kuchmii S.Ya., Pokhodenko V.D. (2005). Quantum size effects in the photonics of semiconductor nanoparticles. Theoret. Experim. Chem. 41: 67–91CrossRefGoogle Scholar
  27. Stroyuk A.L., Shvalagin V.V., Kuchmii S.Ya. (2005). Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. J. Photochem. Photobiol. A: Chem. 173: 185–194CrossRefGoogle Scholar
  28. Subramanian V., Wolf E.E., Kamat P.V. (2003). Green emission to probe photoinduced charging events in ZnO–Au nanoparticles. Charge distribution and Fermi-level equilibration. J. Phys. Chem. B 107: 7479–7485CrossRefGoogle Scholar
  29. Tani T., Mädler L., Pratsinis S.E. (2002). Homogeneous ZnO nanoparticles by flame spray pyrolysis, J. Nanoparticle Research 4: 337–343CrossRefGoogle Scholar
  30. Terenin A.N. (1967). Photonics of Dye Molecules. Leningrad, NaukaGoogle Scholar
  31. Wang Y., Herron N. (1991). Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects and photophysical properties, J. Phys. Chem. 95: 525–532CrossRefGoogle Scholar
  32. Wong E.M., Hoertz P.G., Liang C.J., Shi B.-M., Meyer G.J., Searson P.C. (2001). Influence of organic capping on the growth kinetics of ZnO nanoparticles. Langmuir 17: 8362–8367CrossRefGoogle Scholar
  33. Wood A., Giersig M., Mulvaney P. (2001). Fermi level equilibration in quantum dot – metal nanojunctions. J. Phys. Chem. B 105: 8810–8815CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Shvalagin
    • 1
  • A. L. Stroyuk
    • 1
  • S. Ya. Kuchmii
    • 1
  1. 1.Pisarzhevski Institute of Physical ChemistryNational academy of sciences of UkraineKievUkraine

Personalised recommendations