Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 899–910 | Cite as

Nanocrystalline ruthenium oxide and ruthenium in sensing applications – an experimental and theoretical study

  • Anette Salomonsson
  • Rodrigo M. PetoralJr.
  • Kajsa Uvdal
  • Christian Aulin
  • Per-Olov Käll
  • Lars Ojamäe
  • Michael Strand
  • Mehri Sanati
  • Anita Lloyd Spetz
Article

Abstract

In this project, we have explored RuO2 and Ru nanoparticles (∼ ∼10 and ∼ ∼5 nm, respectively, estimated from XRD data) to be used as gate material in field effect sensor devices. The particles were synthesized by wet chemical procedure. The capacitance versus voltage characteristics of the studied capacitance shifts to a lower voltage while exposed to reducing gases. The main objectives are to improve the selectivity of the FET sensors by tailoring the dimension and surface chemistry of the nanoparticles and to improve the high temperature stability. The sensors were characterized using capacitance versus voltage measurements, at different frequencies, 500 Hz to 1 MHz, and temperatures at 100–400°C. The sensor response patterns have been found to depend on operating temperature. X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the oxidation state due to gas exposure. Quantum-chemical computations suggest that heterolytic dissociative adsorption is favored and preliminary computations regarding water formation from adsorbed hydrogen and oxygen was also performed.

Keywords

nanoparticles gas sensors RuO2 Ru FET devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants from the Swedish Research Council, the Swedish Agency for Innovation Systems and Swedish Industry through the Center of Excellence, S-SENCE. We would like to thank Jeanette Nilsson for deposition of contact metals, and Evald Mild, at Linköping University, Sweden, who performed the skillful mounting of the sensor chips.

References

  1. Andersson M., Ljung P., Mattson, M., Löfdahl M., Lloyd Spetz A., (2004). Investigations on the possibilities of a MISiCFET sensor system for OBD and combustion control utilizing different catalytic gate materials. Topics Catal. 30/31:365CrossRefGoogle Scholar
  2. Åbom A.E., Comini E., Sberveglieri G., Finnegan N., Petrov I., Hultman L., Eriksson M., (2003). Experimental evidence for a dissociation mechanism in NH3 detection with MIS field-effect devices. Sensors Actuators B 89: 1–8CrossRefGoogle Scholar
  3. Bhaskar S., Dobal P.S., Majumder S.B. and Katiyar R.S. (2001). X-ray photoelectron spectroscopy and micro-Raman analysis of conductive RuO2 thin films. J. Appl. Phys. 89:2987–2992CrossRefGoogle Scholar
  4. Böttcher A., Rogozia M., Niehus H., Over H., Ertl G. (1999). Transient experiments on CO2 formation by the CO oxidation reaction over oxygen-rich Ru(0001) surfaces. J. Phys. Chem. B 103:6267–6271CrossRefGoogle Scholar
  5. Cocke D.L., Abend G., Block J.H., Kruse N., (1985). Oxidation of ruthenium studied by pulsed field desorption mass spectrometry. Langmuir 1:507–509CrossRefGoogle Scholar
  6. Cox P.A., Goodenough J.B., Tavener P.J., Telles D., Egdell R.G. (1986). The electronic structure of Bi2-xGdxRu2O7 and RuO2: a study by electron spectroscopy. J. Solid State Chem. 62:360–370CrossRefGoogle Scholar
  7. Eriksson M., Salomonsson A., Lundström I., Briand D., Åbom A.E., (2005). The influence of the insulator surface properties on the hydrogen response of field-effect gas sensors. J. Appl. Phys. 98:034903-1–034903-6CrossRefGoogle Scholar
  8. Fogelberg J., Lundström I., Petersson L.-G., (1987). Ammonia dissociation on oxygen covered palladium studied with a hydrogen sensitive Pd-MOS device. Phys. Scripta 35:702–705CrossRefGoogle Scholar
  9. Lembo A., Fuso F., Arimondo E., Ciofi C., Pennelli G., Curro G.M., Neri F. and Allegrini M., (1997). Pulsed laser deposition and characterization of conductive Ruo2 thin films. J. Mater. Res. 12:1433--1436CrossRefGoogle Scholar
  10. Kim K.S. and Winograd N.J. (1974). X-ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces. J. Catal. 35:66–72CrossRefGoogle Scholar
  11. Kolkamov A., Zhang Y., Cheng G., Moskovits M., (2003). Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15(12):997–1000CrossRefGoogle Scholar
  12. Lloyd Spetz A., Savage S., (2003). Advances in FET chemical gas sensors. In: Choyke W.J., Matsunami H., Pensl G., (eds). Recent Major Advances in SiC. Springer, Berlin, pp. 879–906Google Scholar
  13. Löfdahl M., Utaiwasin C., Carlsson A., Lundström I., Eriksson M., (2001). Gas response dependence on gate metal morphology of field-effect devices. Sensors Actuators B 80:183–192CrossRefGoogle Scholar
  14. Löfdahl M., Eriksson M., Johansson M., Lundström I., (2002). Difference in hydrogen sensitivity between Pt and Pd field-effect devices. J. Appl. Phys. 91:4275–4280CrossRefGoogle Scholar
  15. Málek J., Watanabe A., Mitsuhashi T., (1996). Crystallization kinetics of amorphous RuO2. Thermochim. Acta 282/283:131–142CrossRefGoogle Scholar
  16. Milman V., Winkler B., White J.A., Pickard C.J., Payne M.C., Akhmatskaya E.V., Nobes R.H., (2000). Electronic structure, properties and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 77(5): 895--910CrossRefGoogle Scholar
  17. Ojamäe, L., C. Aulin, H. Pedersen & P.-O. Käll, 2005. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J. Colloid Interface Sci. (in press)Google Scholar
  18. Over, H., 2002. Ruthenium dioxide, a fascinating material for atomic scale surface chemistry. Appl. Phys. A 75, 37–44CrossRefGoogle Scholar
  19. Over H., Muhler M., (2003). Catalytic CO oxidation over ruthenium-bridging the pressure gap. Prog. Surf. Sci. 72:3–17CrossRefGoogle Scholar
  20. Persson P., Lunell S., and Ojamäe L., (2002). Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO(100) surfaces. Int. J. Quantum Chem. 89:172–180CrossRefGoogle Scholar
  21. Peden C.H.F., Goodman D.W., (1986). Kinetics of CO oxidation over Ru(0001). J. Phys. Chem. 90:1360–1365CrossRefGoogle Scholar
  22. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., (1992). Phys. Rev. B 46(11):6671–6687CrossRefGoogle Scholar
  23. Rochefort D., Dabo P., Guay D. and Sherwood P.M.A. (2003), XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim. Acta 48:4245–4252CrossRefGoogle Scholar
  24. Roy S., Jacob C., Lang C., Basu S., (2003). Studies on Ru/3C-SiC Schottky junctions for high temperature hydrogen sensors. J. Electrochem. Soc. 150(6):H135–H139CrossRefGoogle Scholar
  25. Salomonsson A., Roy S., Aulin C., Cerdà J., Käll P.-O., Ojamäe L., Strand M., Sanati M., Lloyd Spetz A., (2005). Nanoparticles for long-term stable, more selective MISiCFEt gas sensors. Sensors Actuators B 107/2:831–838CrossRefGoogle Scholar
  26. Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895.CrossRefGoogle Scholar
  27. Vuong D.D., Sakai G., Shimanoe K., Yamazoe N., (2005). Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size. Sensors Actuators B 105:437–442CrossRefGoogle Scholar
  28. Wallin M., Grönbeck H., Lloyd Spetz A., Skoglundh M., (2004). Vibrational study of ammonia adsorption on Pt/SiO2. Appl. Surf. Sci. 235:487CrossRefGoogle Scholar
  29. Wallin M., Grönbeck H., Lloyd Spetz A., Eriksson M., Skoglundh M., (2005). Vibrational analysis of H2 and D2 adsorption on Pt/SiO2. J. Phys. Chem. B 109:9581–9588CrossRefGoogle Scholar
  30. Wang J., Fan C.Y., Sun Q., Reuter K., Jacobi K., Scheffler M., Ertl G., (2003). Surface coordination chemistry: dihydrogen versus hydride complexes on RuO2(110). Angew. Chem. Int. Ed. 42(19):2151–2154CrossRefGoogle Scholar
  31. Wendt S., Seitsonen A.P., Kim Y.D., Knapp M., Idriss H., Over H. (2002). Complex redox chemistry on the RuO2(110) surface: experiment and theory. Surf. Sci. 505:137–152CrossRefGoogle Scholar
  32. White J.A., Bird D.M., (1994). Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys. Rev. B 50:4954–4957CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Anette Salomonsson
    • 1
  • Rodrigo M. PetoralJr.
    • 2
  • Kajsa Uvdal
    • 2
  • Christian Aulin
    • 3
  • Per-Olov Käll
    • 3
  • Lars Ojamäe
    • 3
  • Michael Strand
    • 4
  • Mehri Sanati
    • 4
  • Anita Lloyd Spetz
    • 1
  1. 1.S-SENCE and Division of Applied PhysicLinköping UniversityLinköpingSweden
  2. 2.Division of Applied Physics and Sensor ScienceLinköping UniversityLinköpingSweden
  3. 3.Physical and Inorganic ChemistryLinköping UniversityLinköpingSweden
  4. 4.School of Technology and Design/ChemistryVäxjö UniversityVäxjöSweden

Personalised recommendations