Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 809–822 | Cite as

Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance

  • Kurt D. Benkstein
  • Carlos J. Martinez
  • Guofeng Li
  • Douglas C. Meier
  • Christopher B. Montgomery
  • Steve SemancikEmail author


The development of miniaturized chemical sensors is an increasingly active area of research. Such devices, particularly when they feature low mass and low power budgets, can impact a broad range of applications including industrial process monitoring, building security and extraterrestrial exploration. Nanostructured materials, because of their high surface area, can provide critical enhancements in the performance of chemical microsensors. We have worked to integrate nanomaterial films with MEMS (microelectromechanical systems) microhotplate platforms developed at the National Institute of Standards and Technology in order to gain the benefits of both the materials and the platforms in high-performance chemical sensor arrays. Here, we describe our success in overcoming the challenges of integration and the benefits that we have achieved with regard to the critical sensor performance characteristics of sensor response, speed, stability and selectivity. Nanostructured metal oxide sensing films were locally deposited onto microhotplates via chemical vapor deposition and microcapillary pipetting, and conductive polymer nanoparticle films were deposited via electrophoretic patterning. All films were characterized by scanning electron microscopy and evaluated as conductometric gas sensors.


chemical sensors nanoparticles metal oxides conducting polymers MEMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by NASA Code R. We would like to thank Richard Cavicchi for useful discussions, Mike Carrier for device design work and Jim Melvin for technical assistance.


  1. Afridi M., Hefner A., Berning D., Ellenwood C., Varma A., Jacob B., Semancik S., (2004). MEMS-based embedded sensor virtual components for system-on-a-chip (SoC). Solid-State Electron. 48: 1777–1781CrossRefGoogle Scholar
  2. Barsan N., Weimar U., (2002). Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 7: 143–167CrossRefGoogle Scholar
  3. Benkstein K.D., Kopidakis N., van de Lagemaat J., Frank A.J., (2003). Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells. J. Phys. Chem. B 107: 7759–7767CrossRefGoogle Scholar
  4. Benkstein K.D., Montgomery C.B., Vaudin M.D., Semancik S., (2005a). The Development and Evaluation of TiO2 Nanoparticle Films for Conductometric Gas Sensing on MEMS Microhotplate Platforms. Mater. Res. Soc. Symp. Proc. 828: A.7.1–A.7.4Google Scholar
  5. Benkstein K.D. & S. Semancik, 2005. Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens. Actuators, B (In press)Google Scholar
  6. Boger Z., Meier D.C., Cavicchi R.E., Semancik S., (2003a). Rapid Identification of Chemical Warfare Agents by Artificial Neural Network Pruning of Temperature-Programmed Microsensor Databases. Sensor Lett. 1: 86–92CrossRefGoogle Scholar
  7. Boger Z., R.E. Cavicchi & S. Semancik, 2003b. Analysis of conductometric micro-sensor responses in a 36-sensor array by artificial neural networks modeling. Olfaction and Electronic Nose (Arcane Editrice S.r.l., Rome), 135–140Google Scholar
  8. Caruso F., Caruso R.A., Mohwal H., (1998). Nanoengineering of Inorganic Hybrid Hollow Spheres by Colloidal Templating. Science 282(5391): 1111–1114CrossRefGoogle Scholar
  9. Caruso F., Lichtenfel H., Giersi M., Mohwal H., (1998). Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles. J. Am. Chem. Soc. 120: 8523–8524CrossRefGoogle Scholar
  10. Cavicchi R.E., Walton R.M., Aquino-Class M., Allen J.D., Panchapakesan B., (2001). Spin-on nanoparticle tin oxide for microhotplate gas sensors. Sens. Actuators, B 77: 145–154CrossRefGoogle Scholar
  11. Cavicchi R.E., Semancik S., DiMeo Jr F., Taylor C.J., (2003). Use of Microhotplates in the Controlled Growth and Characterization of Metal Oxides for Chemical Sensing. J. Electroceram. 9: 155–164CrossRefGoogle Scholar
  12. Comini E., Guidi V., Frigeri C., Ricco G., Sberveglieri G., (2001). CO sensing properties of titanium and iron oxide nanosized thin films. Sens. Actuators, B 77: 16–21CrossRefGoogle Scholar
  13. Garcia-Belmonte G., Kytin V., Dittrich T., Bisquert J., (2003). Effect of humidity on the ac conductivity of nanoporous TiO2. J. Appl. Phys. 94(8): 5261–5264CrossRefGoogle Scholar
  14. Hoel A., Ederth J., Kopniczky J., Heszler P., Kish L.B., Olsson E., Granqvist C.G., (2002). Conduction invasion noise in nanoparticle WO3/Au thin-film devices for gas sensing application. Smart Mater. Struct. 11: 640–644CrossRefGoogle Scholar
  15. Huber B., Gnaser H., Ziegler C., (2003). Characterization of nanocrystalline anatase TiO2 thin films. Anal. Bioanal. Chem. 375(7): 917–923Google Scholar
  16. Izu N., Shin W., Murayama N., (2003). Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B 93: 449–453CrossRefGoogle Scholar
  17. James D., Scott S. M., Ali Z., O’Hare W.T., (2005). Chemical Sensors for Electronic Nose Systems. Microchim. Acta 149(1–2): 1–17CrossRefGoogle Scholar
  18. Kang M.G., Park N.-G., Park Y.J., Ryu K.S., Chang S.H., (2003). Manufacturing method for transparent electric windows using dye-sensitized TiO2 solar cells. Sol. Energ. Mat. Sol. C. 75(3–4): 475–479CrossRefGoogle Scholar
  19. Li G., Josowicz M., Janata J., (2002). Electrochemical assembly of conducting polymer films on an insulating surface. Electrochem. Solid-State Lett. 5(4): D5–D8CrossRefGoogle Scholar
  20. Li G., Martinez C., Semancik S., Smith J.A., Josowicz M., Janata J., (2004). Effect of Morphology on the Response of Polyaniline-based Conductometric Gas Sensors: Nanofibers vs. Thin Films. Electrochem. Solid-State Lett. 7(10): H44–H47CrossRefGoogle Scholar
  21. Li, G., C. Martinez, Semancik S., (2005). Controlled electrophoretic patterning of polyaniline from a colloidal suspension. J. Am. Chem. Soc. 127(13): 4903–4909CrossRefGoogle Scholar
  22. Martinez C. J., B. Hockey, C.B. Montgomery & S. Semancik, 2005. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21(17), 7937–7944Google Scholar
  23. Nartowski A.M., Atkinson A., (2003). Sol-Gel Synthesis of Sub-Micron Titanium-Doped Chromia Powders for Gas Sensing. J. Sol-Gel Sci. Tech. 26(1–3): 793–797CrossRefGoogle Scholar
  24. Panchapakesan B., DeVoe D.L., Widmaier M.R., Cavicchi R., Semancik S., (2001). Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12: 336–349CrossRefGoogle Scholar
  25. Park C.O., Akbar S.A., (2003). Ceramics for chemical sensing. J. Mat. Sci. 38: 4611–4637CrossRefGoogle Scholar
  26. Persaud K., Dodd G., (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881): 352–355CrossRefGoogle Scholar
  27. Ruiz A.M., Dezanneau G., Arbiol J., Cornet A., Morante J.R., (2004). Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles. Chem. Mater. 16: 862–871CrossRefGoogle Scholar
  28. Safonova O., Bezverkhy I., Fabrichnyi P., Rumyantseva M., Gaskov A., (2002). Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements. J. Mater. Chem. 12(4): 1174–1178CrossRefGoogle Scholar
  29. Savage N.O., Roberson S., Gillen G., Tarlov M.J., Semancik S., (2003). Thermolithographic Patterning of Sol-Gel Metal Oxides on Micro Hot Plate Sensing Arrays Using Organosilanes. Anal. Chem. 75: 4360–4367CrossRefGoogle Scholar
  30. Semancik S., Cavicchi R.E., (1998). Kinetically Controlled Chemical Sensing Using Micromachined Structures. Acc. Chem. Res. 31: 279–287CrossRefGoogle Scholar
  31. Semancik, S., Cavicchi R.E., Wheeler M.C., Tiffany J.E., Poirier G.E., Walton R.M., Suehle J.S., Panchapakesan B., DeVoe D.L., (2001). Microhotplate platforms for chemical sensor research. Sens. Actuators, B 77: 579–591CrossRefGoogle Scholar
  32. Semancik S., (2003). In: Xiang X.-D. & Takeuchi I. eds. Combinatorial Materials Synthesis. Marcel Dekker, Inc., New York, NYGoogle Scholar
  33. Soulantica K., Erades L., Sauvan M., Senocq F., Maisonnat A., Chaudret B., (2003). Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing. Adv. Funct. Mater. 13(7): 553–557CrossRefGoogle Scholar
  34. Suehle J.S., Cavicchi R.E., Gaitan M., Semancik S., (1993). Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing. IEEE Electron Device Lett. 14(3): 118–120CrossRefGoogle Scholar
  35. Taylor C.J., Semancik S., (2002). Use of Microhotplate Arrays as Microdeposition Substrates for Materials Exploration. Chem. Mater. 14: 1671–1677CrossRefGoogle Scholar
  36. Traversa E., Di Vona M.L., Licoccia S., Sacerdoti M., Carotta M.C., Crema L., Martinelli G., (2001). Sol-Gel Processed TiO2-Based Nano-Sized Powders for Use in Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring. J. Sol-Gel Sci. Tech. 22: 167–179CrossRefGoogle Scholar
  37. Wang S.-H., Chou T.-C., Liu C.-C., (2003). Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators B 94: 343–351CrossRefGoogle Scholar
  38. Zaban A., Ferrere S., Sprague J., Gregg B.A., (1997). pH-Dependent Redox Potential Induced in a Sensitizing Dye by Adsorption onto TiO2. J. Phys. Chem. B 101: 55–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Kurt D. Benkstein
    • 1
  • Carlos J. Martinez
    • 1
  • Guofeng Li
    • 1
    • 2
  • Douglas C. Meier
    • 1
  • Christopher B. Montgomery
    • 1
  • Steve Semancik
    • 1
    Email author
  1. 1.Chemical Science and Technology LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Geo-Centers, Inc., R&D CenterManassasUSA

Personalised recommendations