Journal of Nanoparticle Research

, Volume 8, Issue 3–4, pp 351–360 | Cite as

Blue TiO\(_{2 -x}\)/SiO2 nanoparticles by laser pyrolysis

  • Hicham Maskrot
  • Nathalie Herlin-Boime
  • Yann Leconte
  • Krystina Jursikova
  • Cécile Reynaud
  • Jean Vicens


Composite TiSiOC nanoparticles with Ti/Si ratio varying in a very large range were prepared by laser pyrolysis of a gas–spray mixture of silane and titanium tetra-isopropoxide. The as-formed nanoparticle batches exhibit intense blue colours, varying from dark to light blue while the Ti/Si ratio increases. This blue colour is attributed to the formation of sub-stoichiometric TiO\(_{2-x}\)compounds induced by the presence of reducing agents such as silicon-based radicals and carbon atoms in the reaction medium. The blue colour of the powders is stable for several months at room temperature in normal atmospheric conditions. Elemental analysis, specific surface area and pycnometry measurements, as well as Photon Correlation Spectroscopy allow determining the chemical composition and size of the as-synthesized nanoparticles as a function of the Ti/Si ratio. X-ray diffraction, transmission electron microscopy and IR spectroscopy have been used to analyse their chemical organisation, nanostructure and morphology. Mean grain size is found around 20 nm. The nanoparticles exhibit a core-shell structure TiO\(_{2-x}\)/SiO2, with a core made of titania, surrounded by an amorphous shell, mainly of silica. Crystallites of anatase are present in the core with size increasing with the Ti/Si ratio. Annealing under air at 800°C induces the removal of carbon and the crystallisation of the powders with light beige to white colours.


laser pyrolysis titania silica nanoparticles metal oxide particles pigment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhtar M.K., Pratsinis S.E., Mastrangelo S.V.R. (1992) Dopants in vapor-phase synthesis of titania powder. J. Am. Ceram. Soc. 75: 3408CrossRefGoogle Scholar
  2. Akhtar M.K, Xiong Y., Pratsinis S.E. (1991). Vapor synthesis of titania powder by titanium tetrachloride oxidation. Journal of Aerosol Science 22(1): S35CrossRefGoogle Scholar
  3. Ahonen P.P., Moisala A., Tapper U., Brown D.P., Jokiniemi J.K., Kauppinen E.I. (2002) Gas-phase crystallization of titanium dioxide nanoparticles. J. Nanoparticles Res. 4(1–2):43CrossRefGoogle Scholar
  4. Alexandrescu R., Dumitrache F., Morjan I., Sandu I., Savoiu M., Voicu I., Fleaca C., Piticescu R. (2004) TiO2 nanosized powders by TiCl4 laser pyrolysis. Nanotechnology 15: 537CrossRefGoogle Scholar
  5. Bertoluzza A., Fagnano C., Morelli M.A., Gottardi V. (1982). Raman and infrared spectra on silica gel evolving toward glass. J. Non-Cryst. Solids 48(1): 117CrossRefGoogle Scholar
  6. Bouclé J., N. Herlin-Boime & A. Kassiba, 2005. Influence of silicon and carbon excesses on the aqueous dispersion of SiC nanocrystals for optical application. J. Nano. Res. 7, 275Google Scholar
  7. Bregani F., Casale C., Depero L.E., Natali-Sora I., Robba D., Sangaletti L., Toledo G.P. (1996) Temperature effects on the size of anatase crystallites in Mo-TiO2/ and W-TiO2 powders. Sensors and Actuators B 31: 25CrossRefGoogle Scholar
  8. Cannon W.R., Danforth S.C., Haggerty J.S., Marra R.A. (1986) Sinterable Ceramic Powders from Laser-Driven Reactions: Process description and modelling. J. Am. Ceram. Soc. 65: 330CrossRefGoogle Scholar
  9. Casey J.D., Haggerty J.S. (1987). Laser-induced vapour-phase synthesis of titanium dioxide. J. Mater. Sci. 22(12):4307CrossRefGoogle Scholar
  10. Cauchetier M., Croix O., Herlin N., Luce M. (1994) Nanocomposite Si/C/N powder production by laser-aerosol interaction. J. Am. Ceram. Soc. 77(4):993CrossRefGoogle Scholar
  11. Curcio F., Musci M., Notaro N., De Michele G. (1990) Synthesis of ultrafine TiO2 powders by a CW CO2 laser. Applied Surface Science 46:225CrossRefGoogle Scholar
  12. Depero L.E, Marino A., Allieri B., Bontempi E., Sangaletti L., Casale C., Notaro M. (2000) Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. J. Mater. Res. 15(10):2080Google Scholar
  13. Ehrman S.H., Friedlander S.K., Zachariah M.R. (1998) Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. J. Aerosol Sci. 29(5/6):687CrossRefGoogle Scholar
  14. Herlin N., Armand X., Musset E., Martinengo H., Luce M., Cauchetier M. (1996) Nanometric Si-based oxide powders : synthesis by laser spray pyrolysis and characterization. J. European Ceram. Soc. 16:1063CrossRefGoogle Scholar
  15. Hubbard K.J., Schlom D.G. (1996) Thermodynamic stability of binary oxides in contact with silicon”. J. Mater. Res. 11(11): 2757Google Scholar
  16. Hung C.H., Katz J.L. (1992) Formation of mixed oxide powders in flames: Part I. TiO2-SiO2. J. Mater. Res.7(7): 1861Google Scholar
  17. Kammler H.K., Pratsinis S.E. (2003). Carbon-coated titania nanostructured particles: continuous, one-step flame-synthesis. J. Mater. Res. 18(11):2670Google Scholar
  18. Kim S., Gislason J.J., Morton R.W., Pan X.Q., Sun H.P., Laine R.M. (2004) Liquid-feed flame spray pyrolysis of nanopowders in the alumina-titania system. Chemistry of materials 16(12): 2336CrossRefGoogle Scholar
  19. Langlet M., D. Walz, P. Marage & J.C. Joubert, 1992. Glass and ceramic thin films deposited by an ultrasonically assisted sol–gel technique. Thin solid films 221(1–2), 44Google Scholar
  20. Lin-Vien D., N.B. Colthup, W.G. Fateley & J.G. Grasselli, 1991. The Handbook of Infrared and Raman Characteristic Frequencies. Academic Press Inc.Google Scholar
  21. Luce M., Herlin N., Musset E., Cauchetier M. (1994). Laser synthesis of nanometric silica powders. Nanostructured Materials 4(4):403CrossRefGoogle Scholar
  22. Margaret S., Wooldridge S. (1998) Gas-phase combustion synthesis of particles. Prog. Energy Combust. Sci. 24:63CrossRefGoogle Scholar
  23. Matthews R.W. (1988). An adsorption water purifier with in situ photocatalytic regeneration. J. Catal. 113:549CrossRefGoogle Scholar
  24. Musci M., Notaro N., Curcio F., Casale C., De Michele G. (1992) Laser synthesis of vanadium-titanium oxide catalysts. J. Mater. Res. 7(10): 2846Google Scholar
  25. Pratsinis S.E. (1998). Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24:197CrossRefGoogle Scholar
  26. Rice G., Woodin R. (1989) Kinetics and mechanism of laser-driven powder synthesis from organosilane precursors. J. Mater. Res. 4(6):1538Google Scholar
  27. Rulison A.J., Miquel P.F., Katz J.L. (1996) Titania and silica powders produced in a counterflow diffusion flame. J. Mater. Res. 11(12):3083Google Scholar
  28. Stark W.J, Strobel R., Günther D., Pratsinis S.E., Baiker A. (2002). Titania silica doped with transition metals via flame synthesis: structural properties and catalytic behavior in epoxidation. J. Mater. Chemi. 12:3620CrossRefGoogle Scholar
  29. Tanaka T., Teramura K., Yamamoto T., Takenaka S., Yoshida S., Funabiki T. (2002) TiO2/SiO2 photocatalysts at low levels of loading: preparation, structure and photocatalysis. J. Photochem. and Photobio. A: Chemistry 148:277CrossRefGoogle Scholar
  30. Yu J., Yu J.C., Zhao X. (2002). The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films. J. of Sol-Gel Science and Technology 24: 95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hicham Maskrot
    • 1
  • Nathalie Herlin-Boime
    • 1
  • Yann Leconte
    • 1
  • Krystina Jursikova
    • 1
  • Cécile Reynaud
    • 1
  • Jean Vicens
    • 2
  1. 1.Laboratoire Francis Perrin (CEA-CNRS URA 2453), Service des Photons, Atomes et MoléculesDSM-DRECAMGif/Yvette CedexFrance
  2. 2.Laboratoire Structure des Interfaces et Fonctionnalité des Couches Minces (ENSICAEN-CNRS UMR 6176)Caen CedexFrance

Personalised recommendations