Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 3–4, pp 511–517 | Cite as

Synthesis of nanoparticles in an atmospheric pressure glow discharge

  • M.D. Barankin
  • Y. Creyghton
  • A. Schmidt-Ott
Article

Abstract

Nanopowders are produced in a low temperature, non-equilibrium plasma jet (APPJ), which produces a glow discharge at atmospheric pressure, for the first time. Amorphous carbon and iron nanoparticles have been synthesized from Acetylene and Ferrocene/H2, respectively. High generation rates are achieved from the glow discharge at near-ambient temperature (40–80°C), and rise with increasing plasma power and precursor concentration. Fairly narrow particle size distributions are measured with a differential mobility analyzer (DMA) and an aerosol electrometer (AEM), and are centered around 30–35 nm for carbon and 20–25 nm for iron. Particle characteristics analyzed by TEM and EDX reveal amorphous carbon and iron nanoparticles. The Fe particles are highly oxidized on exposure to air. Comparison of the mobility and micrograph diameters reveal that the particles are hardly agglomerated or unagglomerated. This is ascribed to the unipolar charge on particles in the plasma. The generated particle distributions are examined as a function of process parameters.

Key words:

nanoparticle production glow discharge atmospheric pressure plasma non-equilibrium plasma iron nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Dr. P. J. Kooyman for preparing all the TEM micrographs presented in this article.

References

  1. Bartz H., Fissan H., Helsper C., Kousaka Y., Okuyama K., Fukushima N., Keady P.B., Kerrigan Bauer M. and von Keudell A. (2004). Plasma Sources Science and Technology 13: 285–92CrossRefGoogle Scholar
  2. Benedikt J., Wisse M., Woen R.V., Engeln R. and Sanden M.C.M.v.d. (2003). Journal of Applied Physics 94: 6932–8CrossRefGoogle Scholar
  3. Cui C. and Goree J. (1994). Plasma Science, IEEE Transactions on 22:151–8CrossRefGoogle Scholar
  4. Fernández de la Mora J., de Juan L., Liedtke K., Schmidt-Ott A. (2003). J. Aerosol Sci. 34: 79CrossRefGoogle Scholar
  5. Hicks R.F., Babayan S.E., Jeong J.Y., Tu V.J., Park J., Selwyn G.S. (1998). Plasma Sources Sci. Technol. 7: 286–8CrossRefGoogle Scholar
  6. Hollenstein C. (2000). Plasma Physics and Controlled Fusion 42: R93–R104CrossRefGoogle Scholar
  7. Jeong J.Y., Babayan S.E., Tu V.J., Park J., Henins I., Hicks R.F., and Selwyn G.S. (1998). Plasma Sources Sci. Technol. 7: 282–5CrossRefGoogle Scholar
  8. Kruis F.E., Fissan H., Peled A. (1998). Journal of Aerosol Science 29: 511–35CrossRefGoogle Scholar
  9. Li X., Chiba A., Sato M., Takahashi S. (2003). Acta Materialia.51: 5593–600CrossRefGoogle Scholar
  10. Mitu B., Vizireanu S., Petcu C., Dinescu G., Dinescu M., Birjega R., Teodorescu V.S. (2004). Surface and Coatings Technology 180–181: 238–43CrossRefGoogle Scholar
  11. Nowling G.R., Babayan S.E., Jankovic V. and Hicks R.F. (2002). Plasma Sources Science and Technology 11: 97–103CrossRefGoogle Scholar
  12. Pocsik I., Veres M., Fule M., Koos M., Kokavecz J., Toth Z., Radnoczi G. (2002). Vacuum Surface Engineering, Surface Instrumentation & Vacuum Technology 71: 171–6Google Scholar
  13. Sakka Y., Okuyama H., Uchikoshi T., and Ohno S. (2002). Journal of Alloys and Compounds 346: 285–91CrossRefGoogle Scholar
  14. Schrick B., Hydutsky B.W., Blough J.L., and Mallouk T.E. (2004). Chem. Mater. 16: 2187–93CrossRefGoogle Scholar
  15. Schütze A., Jeong J.Y., Babayan S.E., Park J., Selwyn G.S., Hicks R.F. (1998). IEEE Transactions on Plasma Science 26:1685–94CrossRefGoogle Scholar
  16. Smirnov B.M.(2001). Physics of Ionized Gases. Wiley-Interscience, New YorkGoogle Scholar
  17. Shao H., Liu T., Li X., Zhang L. (2003). Scripta Materialia 49: 595–9CrossRefGoogle Scholar
  18. Suda Y., Ono T., Akazawa M., Sakai Y., Tsujino J., Homma N. (2002). Thin Solid Films 415: 15–20CrossRefGoogle Scholar
  19. Vollath, D., Vinga Szabó, D., in Innovative Processing of Films and Nanocrystalline Powders, ed. K.-L. Choy, Imperial College Press, London, 2002Google Scholar
  20. Hinds W.C.(1999). Aerosol Technology. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Delft University of Technology, TNW, Particle TechnologyDelftThe Netherlands
  2. 2.TNO,␣PML LaboratoryDelftThe Netherlands

Personalised recommendations