Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 3–4, pp 371–378 | Cite as

Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

  • Takafumi SetoEmail author
  • Kenji Koga
  • Hiroyuki Akinaga
  • Fumiyoshi Takano
  • Takaaki Orii
  • Makoto Hirasawa
Article

Abstract

Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co–Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

Keywords

aerosol nanoparticle laser ablation alloy magnetic property classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported in part by the New Energy and Industrial Technology Development Organization (NEDO) under the Nanotechnology Materials Program.

References

  1. Camata R.P., Hirasawa M., Okuyama K. and Takeuchi K. (2000). Observation of aerosol formation during laser ablation using a low-pressure differential mobility analyzer. J. Aerosol Sci. 31:391–401CrossRefGoogle Scholar
  2. El-Shall M.S. (1996) Laser vaporization for the synthesis of nanoparticles and polymers containing metal particulates. Appl. Surf. Sci. 106:347–355CrossRefGoogle Scholar
  3. Kawakami Y., Seto T., and Ozawa E. (1999) “Characterisitics of tungsten ultra-fine particles produced by Nd:YAG laser irradiation”. Applied Physics A 69-S:249–252CrossRefGoogle Scholar
  4. Kim J., Seto T., Sakiyama K. and Kim D. (2004) Characterization of low pressure DMA system for the size selection of magnetic nano-particles. Appl. Phys. A 79: 1497–1499Google Scholar
  5. Makino T., Suzuki N., Yamada Y., Yoshida T., Seto T., and Aya N. (1999). “Size classification of Si nanoparticles formed by pulsed laser ablation in helium background gas”. Applied Physics A 69-S:243–247CrossRefGoogle Scholar
  6. Ogawa K.,Vogt T., Ulmann M., Johnson S. and Friedlander S.K. (2000). Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation. J. Appl. Phys. 87: 63–73CrossRefGoogle Scholar
  7. Orii T., Hirasawa M. and Seto T. (2003) Tunable narrow-band light emission from size-selected Si nanoparticles produced by pulsed laser ablation. Appl. Phys. Lett. 83:3395 −3397CrossRefGoogle Scholar
  8. Sakiyama K., Koga K., Seto T., Hirasawa M. and Orii T. (2004) Formation of size-selected Ni/NiO core-shell particles by pulsed laser ablation. J. Phys. Chem. B 108:523–529CrossRefGoogle Scholar
  9. Seto T., Kawakami Y., Suzuki N., Hirasawa M., and Aya N. (2001a) “Laser synthesis of uniform silicon single nanodots. Nano Letters 1:315–318CrossRefGoogle Scholar
  10. Seto T., Kawakami Y., Suzuki N., Hirasawa M., Kano S., Aya N., Sasaki S. and Shimura H. (2001b). Evaluation of morphology and size distribution of silicon and titanium oxide nanoparticles generated by laser ablation. J. Nanoparticle Research 3:185–191CrossRefGoogle Scholar
  11. Seto T, Koga K., Akinaga H., Takano F., Sakiyama K., Hirasawa M. and Orii T. (2004) Laser synthesis and magnetic properties of monodispersed core-shell nanoparticles. Appl. Phys. A 79:1165–1167CrossRefGoogle Scholar
  12. Sui Y., Yue L.,Skomski R., Li X.Z., Zhou J. and Sellmyer D.J.(2003).“CoPt hard magnetic nanoparticle films synthesized by high temperature chemical reduction”. J. Appl. Phys. 93: 7571–7573CrossRefGoogle Scholar
  13. Sun S.H., Murray C.B.,Weller D.,Folks L. and Moser A. (2000) “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices”. Science 287: 1989CrossRefPubMedGoogle Scholar
  14. Suzuki N., Makino T., Yamada Y., Yoshida T. and Seto T. (2001) “Monodispersed, nonagglomerated silicon nanocrystallites”. Applied Physics Letters 78: 2043–2045CrossRefGoogle Scholar
  15. Yamada Y., Orii T.,Umezu I., Takeyama S. and Yoshida T.(1996). “Optical properties of silicon nanocrystallites prepared by excimer laser ablation in inert gas”. Jpn. J. Appl. Phys. 35: 1361–1365CrossRefGoogle Scholar
  16. Yu A.C.C., Mizuno M.,Sasaki Y., Kondo H. and Hiraga K.(2002) “Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles”. Appl. Phys. Lett. 81: 3768–3770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Takafumi Seto
    • 1
    • 2
    Email author
  • Kenji Koga
    • 1
    • 3
  • Hiroyuki Akinaga
    • 1
    • 3
  • Fumiyoshi Takano
    • 1
    • 3
  • Takaaki Orii
    • 1
    • 2
  • Makoto Hirasawa
    • 1
    • 2
  1. 1.Research Consortium for Synthetic Nano-Function Materials Project (SYNAF)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Advanced Manufacturing Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Nanotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations