Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 6, pp 1017–1026 | Cite as

Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

  • J. Yang
  • Jim Yang Lee
  • Heng-Phon Too
  • Gan-Moog Chow
  • Leong M. Gan
Article

Abstract

The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV–visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization.

Keywords

DNA Platinum nanoparticles non-specific interaction assembly melting point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the financial support from Agency for Science, Technology & Research (project number 022-101-0038) and the Singapore-MIT Alliance. JY would like to acknowledge the National University of Singapore for his research scholarship.

References

  1. Alivisatos A.P., Johnsson K.P., Peng X., Wilson T.E., Loweth C.J., Bruchez M.P. Jr., Schultz P.G. (1996). Organization of ‘nanocrystal molecules’ using DNA. Nature 382: 609–611CrossRefPubMedGoogle Scholar
  2. Braun E., Eichen Y., Sivan U., Ben-Yoseph G. (1998). DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391: 775–778CrossRefPubMedGoogle Scholar
  3. Cao Y.W., Jin R.C., Mirkin C.A. (2001). DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123: 7961–7962CrossRefPubMedGoogle Scholar
  4. Cassell A.M., Scrivens W.A., Tour J.M. (1998). Assembly of DNA/fullerene hybrid materials. Angew. Chem. Int. Ed. 37: 1528–1531CrossRefGoogle Scholar
  5. Coffer J.L., Bigham S.R., Li X., Pinizzotto R.F., Rho Y.G., Pirtle R.M., Pirtle I.L. (1996). Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl. Phys. Lett. 69, 3851–3853CrossRefGoogle Scholar
  6. Coffer J.L., Bigham S.R., Pinizzotto R.F., Yang H. (1992). Characterization of quantum-confined CdS nanocrystallites stabilized by deoxyribonucleic acid (DNA). Nanotechnology 3: 69–76CrossRefGoogle Scholar
  7. Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277: 1078–1080CrossRefPubMedGoogle Scholar
  8. Fu X., Wang Y., Wu N., Gui L., Tang Y. (2001). Surface modification of small Platinum nanoclusters with alkylamine and alkylthiol: an XPS study on the influence of organic ligands on the Pt 4f binding energies of small platinum nanoclusters. J. Colloid Interface Sci. 243: 326–330CrossRefGoogle Scholar
  9. Gearheart L.A., Ploehn H.J., Murphy C.J. (2001). Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced raman spectroscopy study of intrinsically bent DNA. J. Phys. Chem. B 105: 12609–12615CrossRefGoogle Scholar
  10. Grabar K.C., Freeman R.G., Hommer M.B., Natan M.J. (1995). Preparation and characterization of Au colloid monolayers. Anal. Chem. 67: 735–743CrossRefGoogle Scholar
  11. Jin R., Wu G., Li Z., Mirkin C.A., Schatz G.C. (2003). What controls the melting properties of DNA-linked gold nanoparticle assemblies?. J. Am. Chem. Soc. 125: 1643–1654CrossRefPubMedGoogle Scholar
  12. Li Z., Jin R.C., Mirkin C.A., Letsinger R.L. (2002). Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acid Res. 30: 1558–1562CrossRefPubMedGoogle Scholar
  13. Maeda Y., H. Tabata, Kawai T. (2001). Two-dimensional assembly of gold nanoparticles with a DNA network template. Applied Physics Letters 79: 1181–1183CrossRefGoogle Scholar
  14. Mirkin C.A., Letsinger R.L., R.C. Mucic, Storhoff J.J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382: 607–609CrossRefPubMedGoogle Scholar
  15. Mitchell G.P., C.A. Mirkin, Letsinger R.L.(1999). Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121: 8122–8123CrossRefGoogle Scholar
  16. Mucc R.C., Storhoff J.J., Mirkin C.A., Letsinger R.L. (1998). DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120: 12674–12675CrossRefGoogle Scholar
  17. Niemeyer C.M., W. Burger, Peplies J.(1998). Covalent DNA-streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew. Chem. Int. Ed. 37: 2265–2268CrossRefGoogle Scholar
  18. Park S.J., Lazarides A.A., Mirkin C.A., Brazis P.W., C.R. Kannewurf, Letsinger R.L. (2000). The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Ed. 39: 3845–3848CrossRefGoogle Scholar
  19. Park S.J., T.A. Taton, Mirkin C.A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science 295: 1503–1506CrossRefPubMedGoogle Scholar
  20. Reynolds III R.A., C.A. Mirkin, Letsinger L.R. (2000). Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122: 3795–3796CrossRefGoogle Scholar
  21. Sauthier M.L., Carroll R.L., Gorman C.B., S. Franzen (2002). Nanoparticle layers assembled through DNA hybridization: characterization and optimization. Langmuir 18: 1825–1830CrossRefGoogle Scholar
  22. Storhoff J.J., Elghanian R., C.A. Mirkin, Letsinger R.L. (2002). Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18: 6666–6670CrossRefGoogle Scholar
  23. Storhoff J.J., Elghanian R., Mucic R.C., C.A. Mirkin, R.L. Letsinger (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120:1959–1964CrossRefGoogle Scholar
  24. Storhoff J.J., Lazarides A.A., Mucic R.C., Mirkin C.A., R.L. Letsinger, Schatz G.C. (2000). What controls the optical properties of DNA-linked gold nanoparticle assemblies?. J. Am. Chem. Soc. 122: 4640–4650CrossRefGoogle Scholar
  25. Storhoff J.J., Mirkin C.A. (1999). Programmed materials synthesis with DNA. Chem. Rev. 99: 1849–1862CrossRefPubMedGoogle Scholar
  26. Taton T.A., C.A. Mirkin, Letsinger R.L. (2000a). Scanometric DNA array detection with nanoparticle probes. Science 289: 1757–1760CrossRefGoogle Scholar
  27. Taton T.A., Mucic R.C., C.A. Mirkin, Letsinger R.L. (2000b). The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J. Am. Chem. Soc. 122: 6305–6306CrossRefGoogle Scholar
  28. Wang Y., Ren J., Deng K., L. Gui, Tang Y. (2000). Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 12: 1622–1627CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. Yang
    • 1
  • Jim Yang Lee
    • 1
    • 2
  • Heng-Phon Too
    • 2
    • 3
  • Gan-Moog Chow
    • 2
    • 4
  • Leong M. Gan
    • 5
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore
  2. 2.Singapore-MIT AllianceNational University of Singapore Singapore
  3. 3.Department of BiochemistryNational University of Singapore Singapore
  4. 4.Department of Materials ScienceNational University of Singapore Singapore
  5. 5.Institute of Materials Research and Engineering Singapore

Personalised recommendations