Advertisement

Journal of Nanoparticle Research

, Volume 7, Issue 6, pp 651–657 | Cite as

Off-axis Thermal Properties of Carbon Nanotube Films

  • Saion Sinha
  • Saimir Barjami
  • Germano Iannacchione
  • Alexander Schwab
  • George Muench
Article

Abstract

Theoretical calculations have predicted that individual Single-Walled Carbon Nanotubes (SWNT) have extremely high thermal conductivity (around 6.6 × 104 W/m-K). The feasibility of constructing practical devices using the above mentioned properties, is critically dependent on the ability to synthesize high-thermal-conducting films. Highly conducting films would be of great use as heat sinks for the next generation of integrated chips. Excessive heating is currently a very serious problem in the endeavor for achieving faster and smaller chips. Since it is still not possible to perfectly align SWNT in the macroscopic scale, the thermal properties of the nano-films are therefore expected to have a statistical effect and thus lower than the intrinsic thermal conductivity of a single nanotube. Also the thermal conductivity perpendicular to the tube direction is more significant from a practical point of view. Multi-Walled Carbon Nanotubes (MWNT) were synthesized by Chemical Vapor Deposition (CVD) technique and subsequently characterized. The thin MWNT films were deposited by a solution casting technique over a metallic substrate. The off-axis thermal properties of these nano-films were studied by AC-calorimetry studies. In this method, the sample is heated by an AC source and the measurement of the relaxation rate is used to determine the thermal properties. This technique is well established for studying the thermal properties of complex fluids. Our results are contrasted with other thermal conductivity measurements intrinsic and bulk carbon nanotube samples. We have also measured off-axis thermal properties of nano-films synthesized from more crystalline SWNT samples and have compared this result with that of the MWNT-film. A model to explain the thermal conduction for our system is proposed.

Keywords

multi-walled carbon nanotubes (MWNT) single-walled carbon nanotubes (SWNT) thermal conductivity specific heat film AC-calorimetry off-axis measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., McEuen, P.L. 2000Scanned Probe microscopy of electronic transport in Carbon nanotubesPhys. Rev. Lett.8460826085CrossRefGoogle Scholar
  2. Berber, S., Kwon, Y.K., Tomanek, D. 2000Unusually high thermal conductivity of carbon nanotubesPhys. Rev. Lett.8446134616CrossRefGoogle Scholar
  3. Biercuk, M.J., Llaguno, M.C., Radosavljievic, M., Hyun, J.K., Johnson, A.T., Fischer, J.E. 2002Carbon nanotube composites for thermal managementAppl. Phys. Lett.8027672769CrossRefGoogle Scholar
  4. Cassell, A.M., Raymakers, J., Kong, J., Dai, H. 1999Large scale CVD synthesis of single walled carbon nanotubesJ. Phys. Chem. B10364846492CrossRefGoogle Scholar
  5. Che J., T. Cagin, W.A. Goddard III, 15–17 Oct 1999, Thermal conductivity of nanotubes Proceedings of 7th Foresight Conference on Molecular Nanotechnology, Santa Clara, CAGoogle Scholar
  6. Finotello, D., Qian, S., Iannacchione, G.S. 1997AC calorimetric studies of phase transition of porous substancesThermochim. Acta304/305303316CrossRefGoogle Scholar
  7. Fischer, J.E., Zhou, W., Vavro, J., Llaguno, M.C., Guthy, C., Haggenmueller, R., Casavant, M.J., Walters, D.E., Smalley, R.E. 2003Magnetically aligned single walled carbon nanotube films: Preferred orientation and anisotropic transport propertiesJ. Appl. Phys.9321562163CrossRefGoogle Scholar
  8. Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., Fischer, J.E. 2000Quantized phonon spectra of single walled carbon nanotubesScience28917301732CrossRefGoogle Scholar
  9. Hone, J., Whitney, M., Piskoti, C., Zettl, A. 1999Thermal properties of single walled carbon nanotubesPhys. Rev. B59R25142517CrossRefGoogle Scholar
  10. Klemens P., 6–8 Aug 2001, Theory of heat conduction in carbon nanotubes. Proceedings of 26th International Thermal Conductivity Conference, Cambridge, MAGoogle Scholar
  11. Kim, P., Shi, L., Majumdar, A., McEuen, P.L. 2001Thermal transport measurements of individual nanotubesPhys. Rev. Lett.87215502215505Google Scholar
  12. Lu, J.P. 1997Elastic properties of carbon nanotubes and nanoropesPhys. Rev. Lett.7912971300Google Scholar
  13. Lu, J.P., Han, J. 1998Carbon nanotube and nanotube based devicesInt. J. High Speed Elec. Syst.9101123Google Scholar
  14. Mintmire, J.W., Dunlap, B.I., White, C.T. 1992Are fullerence tubules metalicsPhys. Rev. Lett.68631634CrossRefGoogle Scholar
  15. Saito, R., Dresselhaus, G., Dresselhaus, M.S. 1998Physical Properties of Carbon NanotubesImperial College PressLondonGoogle Scholar
  16. Tang, X.P., Kleinhammes, A., Shimoda, H., Fleming, L., Bennoune, K.Y., Sinha, S., Bower, C., Zhou, O., Wu, Y. 2000NMR characterization of electronic structures of single walled carbon nanotubesScience288492494CrossRefGoogle Scholar
  17. Yi, W., Lu, L., Dian-Lin, Z., Pan, Z.W., Xie, S.S. 1999Linear specific heat of carbon nanotubesPhys. Rev. B59R9015R9013CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Saion Sinha
    • 1
  • Saimir Barjami
    • 2
  • Germano Iannacchione
    • 2
  • Alexander Schwab
    • 3
  • George Muench
    • 4
    • 1
  1. 1.Department of PhysicsUniversity of New HavenWest HavenUSA
  2. 2.Department of PhysicsWorcester Polytechnic InstituteWorcesterUSA
  3. 3.Department of PhysicsHaverford CollegeHaverfordUSA
  4. 4.Precision Combustion Inc.North HavenUSA

Personalised recommendations