Journal of Nanoparticle Research

, Volume 8, Issue 1, pp 105–110 | Cite as

Persistence Length and Nanomechanics of Random Bundles of Nanotubes



A connection between the stiffness of carbon nanotubes (CNT) and their mesoscopic physical behaviour is presented. Persistence lengths of CNT and bundles are calculated and shown to be in macroscopic range (0.03–1 mm for an individual tube), exceeding by many orders of magnitude the typical diameters (around 1–3 nm). Consequently, thermal fluctuations can be neglected when scaling analysis is applied to randomly packed (as produced) CNT network, leading to an approximate equation of state for such material. Beyond the linear elasticity, the outmost CNT are shown to gradually split from the bent bundles; this permits access of solvent or reacting species to the CNT walls, an important mechanism promoting solubilization and chemical functionalization of nanotubes.

Key words

bundles of nanotubes modeling and simulation mechanical properties processing nanoscience 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astrom J.A., Krasheninnikov A.V. and Nordlund K. (2004). Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: A theoretical model. Phys. Rev. Lett. 93: 215503CrossRefGoogle Scholar
  2. de-Gennes P.G. (1979). Scaling Concepts in Polymer Physics. Cornell Univ Press, IthacaGoogle Scholar
  3. Doi M. and Edwards S.F. (1986). The Theory of Polymer Dynamics. Clarendon Press, Oxford Google Scholar
  4. Dyke C.A. and Tour J.M. (2003). Solvent-free functionalization of carbon nanotubes. JACS 125: 1156–1157CrossRefGoogle Scholar
  5. Girifalco L.A., Hodak M. and Lee R.S. (2000). Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62: 13104–13110 CrossRefGoogle Scholar
  6. Harris P.J.F. (1999). Carbon Nanotubes and Related Structures. Cambridge University, Cambridge Google Scholar
  7. Hernandez E., Goze C., Bernier P. and Rubio A. (1998). Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80: 4502–4505 CrossRefGoogle Scholar
  8. Kim W., Choi H.C., Shim M., Li Y.M., Wang D.W. and Dai H.J. (2002). Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett. 2: 703–708CrossRefGoogle Scholar
  9. Kis A. and Csanyi G. (2004). Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater. 3: 153–157CrossRefGoogle Scholar
  10. Kudin K.N., Scuseria G.E. and Yakobson B.I. (2001). C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 64: 235–406CrossRefGoogle Scholar
  11. Landau L.D. and Lifshitz E.M. (1986). Elasticity Theory. Pergamon, OxfordGoogle Scholar
  12. Li Z., Dharap P., Nagarajaiah S., Nordgren R.P. and Yakobson B.I. (2004). Nonlinear analysis of SWCNT over a bundle of nanotubes. Intern. J. solids and structures 41: 6925–6936CrossRefGoogle Scholar
  13. Liu J. and Rinzler A.G. (1998). Fullerene pipes. Science 280: 1253–1256CrossRefGoogle Scholar
  14. Liu J.Z., Zheng Q.S., Wang L.F. and Jiang Q. (2005). Mechanical properties of single-walled carbon nanotube bundles as bulk materials. J. Mech. Phys. Sol. 53: 123–142CrossRefGoogle Scholar
  15. Lu J.P. (1997). Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79: 1297–1300CrossRefGoogle Scholar
  16. Martel R., Shea H.R. and Avouris P. (1999). Ring Formation in Single-Wall Carbon Nanotubes. J. Phys. Chem. 103: 7551Google Scholar
  17. O’Connell M.J. and Bachilo S.M. (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science 297: 593–596CrossRefGoogle Scholar
  18. O’Connell M.J. and Boul P. (2001). Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342: 265–271CrossRefGoogle Scholar
  19. Pikhitsa P.V. (2004). Regular network of contacting cylinders with Implications for materials with negative Poisson ratios. Phys. Rev. Lett. 93: 015505CrossRefGoogle Scholar
  20. Salvetat J.-P. and Briggs G.A. (1999a). Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82: 944–947CrossRefGoogle Scholar
  21. Salvetat J.-P. and Kulik A.J. (1999b). Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11: 161–165CrossRefGoogle Scholar
  22. Sanchez-Portal D., Artacho E., Soler J.M., Rubio A. and Ordejon P. (1999). Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59: 12678–12688CrossRefGoogle Scholar
  23. Sano M., Kamino A., Okamura J. and Shinkai S. (2001). Ring closure of carbon nanotubes. Science 293: 1299–1301CrossRefGoogle Scholar
  24. Suslick K.S. and Price G. (1999). Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29: 295–326CrossRefGoogle Scholar
  25. Tersoff J. and Ruoff R.S. (1994). Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73: 676–679CrossRefGoogle Scholar
  26. Yakobson B.I. (1998). Mechanical relaxation and ‘Intramolecular Plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72: 918–920CrossRefGoogle Scholar
  27. Yakobson, B.I., 2003. In: Goddard W.A. ed. Nanomechanics. Handbook of Nanoscience, Engineering, and Technology., CRC, New York, pp. 17.1–18Google Scholar
  28. Yakobson, B.I. & P. Avouris. 2001. Mechanical Properties of Carbon Nanotubes. Topics Appl. Phys. pp. 287–327Google Scholar
  29. Yakobson B.I., Brabec C.J. and Bernholc J. (1996). Nanomechanics of carbon tubes: Instabilities beyond the linear response. Phys. Rev. Lett. 76: 2511–2514CrossRefGoogle Scholar
  30. Yang W., Li Z.-M., Shi W., Xie B.-H. and Yang M.-B. (2004). Review on auxetic materials. J. Mater. Sci. 39: 3269–3279CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials Science, Department of Chemistry, and Center for Nanoscale Science and TechnologyRice UniversityHoustonUnited states
  2. 2.Code 7130Naval Research LaboratoryWashingtonUnited states

Personalised recommendations