Advertisement

Journal of Nanoparticle Research

, Volume 8, Issue 1, pp 111–116 | Cite as

Is Gold Really Softer than Silver? HSAB Principle Revisited

  • Sudip Nath
  • Sujit Kumar Ghosh
  • Subrata Kundu
  • Snigdhamayee Praharaj
  • Sudipa Panigrahi
  • Tarasankar PalEmail author
Article

Abstract

A detailed comparison of the softness of gold and silver has been reported in the light of hard soft acid base (HSAB) principle. Gold and silver nanoparticles in organic media (i.e., organosol) have been exploited individually to establish the principle. Sulfur and nitrogen were employed as soft and borderline donating atoms to examine the metal-ligand interactions. In this regard, thiols and amines have been considered as interacting ligands with sulfur and nitrogen donor atoms respectively. The stronger affinity of gold towards softer sulfur donor as compared to nitrogen and conversely a reasonable interaction of silver nanoparticles with both the atoms authenticate the softer nature of gold nanoparticle as compared to silver one.

Keywords

gold silver oganosol hard soft ligand nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brust M., M. Walker, D. Bethell, D.J. Schiffrin & R. Whyman, 1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. Chem. Commun. 801–802Google Scholar
  2. Esumi K., Akiyama S. and Yoshimura T. (2003). Multilayer formation using oppositely charged gold- and silver-dendrimernanocomposites. Langmuir 19: 7679–7681CrossRefGoogle Scholar
  3. Garzo’n I.L., Rovira C., Michaelian K., Beltra’n M.R., Ordejo’n P., Junquera J., Sa’nchez-Portal D., Artacho E. and Soler J.M. (2000). Do thiols merely passivate gold nanoclusters?. Phys. Rev. Lett. 85: 5250–5251CrossRefGoogle Scholar
  4. Henglein A. (1993). Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles and the atom-to-metal transition. J. Phys. Chem. 97: 5457–5471CrossRefGoogle Scholar
  5. Jin R., Cao Y.W., Mirkin C.A., Kelly K.L., Schatz G.C. and Zheng J.G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science 294: 1901–1903CrossRefGoogle Scholar
  6. Kreibig U. and Volmer M. (1995). Optical Properties of Metal Clusters. Springer-Verlag, Berlin and Heidelberg GmbH & Co. KGGoogle Scholar
  7. Kruger D., Fuchs H., Rousseau R., Marx D. and Parrinello M. (2001). Interaction of short-chain alkane thiols and thiolates with small gold clusters: Adsorption structures and energetics. J. Chem. Phys. 115: 4776–4786CrossRefGoogle Scholar
  8. Link S. and El-Sayed M.A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodot and nanorods. J. Phys. Chem. B 103: 8410–8426CrossRefGoogle Scholar
  9. Manna A., Imae T., Iida M. and Hisamatsu N. (2001). Formation of silver nanoparticles from a N-Hexadecylethylenediamine silver nitrate complex. Langmuir 17: 6000–6004CrossRefGoogle Scholar
  10. Mendes P.M., Jacke S., Critchley K., Plaza J., Chen Y., Nikitin K., Palmer R.E., Preece J.A., Evans S.D. and Fitzmaurice D. (2004). Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. Langmuir 20: 3766–3768CrossRefGoogle Scholar
  11. Mulvaney P., Giersig M. and Henglein A. (1993). Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. J. Phys. Chem. 97: 7061–7064CrossRefGoogle Scholar
  12. Pal T., Sau T.K. and Jana N.R. (1997). Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media. Langmuir 13: 1481–1485CrossRefGoogle Scholar
  13. Pearson R.G. (1993). The principle of maximum hardness. Acc. Chem. Res. 26: 250–255CrossRefGoogle Scholar
  14. Quinn M. and Mills G. (1994). Surface-mediated formation of gold Particles in basic methanol. J. Phys. Chem. 98: 9840–9844CrossRefGoogle Scholar
  15. Tanaka A., Takeda Y., Nagasawa T., Sasaki H., Kuriyama Y., Suzuku S. and Sato S. (2003). Photoemission study of metallic nanoparticles passivated by dodecanethiolates: silver nanoparticles. Surf. Sci. 532(535): 281–286CrossRefGoogle Scholar
  16. Xie Y., Zhang C., Li J. and Bu X. (2004). Polymeric silver(I) complexes with pyridyl dithioether ligands: experimental and theoretical investigations on the coordination properties of the ligands. Dalton Trans. 4: 562–569CrossRefGoogle Scholar
  17. Walker C.H., St John J.V. and Wisian-Neilson P. (2001). Synthesis and size control of gold nanoparticles stabilized by poly(methylphenylphosphazene). J. Am. Chem. Soc. 123: 3846–3847CrossRefGoogle Scholar
  18. Whetten R.L., Khoury J.T., Alvarez M.M., Murthy S., Vezmar I., Wang Z.L., Stephens P.W., Cleveland C.L., Luedtke W.D. and U. Landman (1996). Nanocrystal gold molecules. Adv. Mater. 8: 428–433CrossRefGoogle Scholar
  19. Yamazaki K. and Namatsu H. (2004). Two-axis-of-rotation drive system in electron-beam lithography apparatus for nanotechnology applications. Microelectron. Eng. 73(74): 85–89CrossRefGoogle Scholar
  20. Zhang P. and Sham T.K. (2003). X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effect. Phys. Rev. Lett. 90: 245502-1–245502-4Google Scholar
  21. Zhou M., Sun L. and Crooks R.M. (1998). Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120: 4877–4878CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sudip Nath
    • 1
  • Sujit Kumar Ghosh
    • 1
  • Subrata Kundu
    • 1
  • Snigdhamayee Praharaj
    • 1
  • Sudipa Panigrahi
    • 1
  • Tarasankar Pal
    • 1
    Email author
  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations