Advertisement

Journal of Nanoparticle Research

, Volume 7, Issue 4–5, pp 435–448 | Cite as

Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

  • Mamadou S. DialloEmail author
  • Charles J. Glinka
  • William A. GoddardIII
  • James H. JohnsonJr.
Article

Abstract

Fulvic acids (FA) and humic acids (HA) constitute 30–50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

Keywords

aggregates aquatic colloids fractals fulvic acids humic substances nanoparticles natural organic matter and neutron scattering water quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, G.R., Malcolm, R.L. 1987Molecular weight of aquatic fulvic acids by vapor pressure osmometryGeochim. Cosmochim. Acta5121772184CrossRefGoogle Scholar
  2. Balnois, E., Wilkinson, K.J., Lead, J.R., Buffle, J. 1999Atomic force microscopy of humic substancesEnviron. Sci. Technol.3339113917CrossRefGoogle Scholar
  3. Beaucage, G. 1995Approximations leading to a unified exponential power-law approach to small-angle scatteringJ. Appl. Crystallogr.28717728CrossRefGoogle Scholar
  4. Beaucage, G. 1996Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimensionJ. Appl. Crystallogr.29134146CrossRefGoogle Scholar
  5. Beckett, R., Jue, Z., Giddings, C.J. 1987Determination of molecular weight distribution of fulvic acids and humic acids using flow field fractionationEnviron. Sci. Technol.21289295CrossRefGoogle Scholar
  6. Birdi, K.S. 1993Fractals in Chemistry, Geophysics and Biophysics. An IntroductionPlenum PressNew YorkGoogle Scholar
  7. Buffle, J., Wilkinson, J., Stoll, S., Fillela, M., Zhang, J. 1998A generalized description of colloid interactions: the three-colloidal component approachEnviron. Sci. Technol.3228872899CrossRefGoogle Scholar
  8. Buhler, E., Boue, F. 2004Chain persistence length and structure in hyaluronan solutions: ionic strength dependence for a model semirgid polymerMacromolecules3716001610CrossRefGoogle Scholar
  9. Chen, S-H, Teixeira, J 1986Structure and fractal dimension of protein-detergent complexesPhys. Rev. Lett.5725832586CrossRefPubMedGoogle Scholar
  10. Conte, P., Piccolo, A. 1999Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic moleculesEnviron. Sci. Technol.3316821690CrossRefGoogle Scholar
  11. Conte, P., Piccolo, A. 1999High pressure size exclusion chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performanceChemosphere38517528CrossRefPubMedGoogle Scholar
  12. Diallo, M.S., Simpson, A., Gassman, P., Faulon, J.L., Johnson, J.H., Goddard, W.A., Hatcher, P.G. 20033-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acidEnviron. Sci. Technol.3717831793CrossRefPubMedGoogle Scholar
  13. Engebretson, R.R., Wandruszka, R. 1994Microorganization in dissolved humic acidsEnviron. Sci. Technol.281934CrossRefGoogle Scholar
  14. Gaffney J.S., Marley N.A. & Clark S.B. (eds.), 1996. Humic and fulvic acids and organic colloids in the environment. In: Humic and Fulvic Acids: Isolation, Structure, and Environmental Role, ACS Symposium Series 651, 2Google Scholar
  15. Glinka, C.J., Barker, J.G., Hammouda, B., Krueger, S., Moyer, J.J., Orts, W.J. 1998The 30-meter small angle neutron scattering instruments at the National Institute of Standards and TechnologyJ. Appl. Crystallogr.31430445CrossRefGoogle Scholar
  16. Guetzloff, T.F., Rice, J.A. 1994Does humic acid form a micelle?Sci. Total Environ.1523135CrossRefGoogle Scholar
  17. Guetzloff T.F. & J.A. Rice, 1996. Micellar nature of humic colloids. In: Gaffney S., Marley A. & Clark S.B. eds. Humic and Fulvic Acids: Isolation, Structure, and Environmental Role. ACS Symposium Series 651, 18–25Google Scholar
  18. Hassan, P.A., Fritz, G., Kaler, E.W. 2003Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic saltJ. Colloid Interf. Sci.257154162CrossRefGoogle Scholar
  19. IGOR Pro Version 4.0. WaveMetrics. http://www.wavemetrics.com/
  20. Jones, M.N., Bryan, N.D. 1998Colloidal properties of humic substancesAdv. Colloid Interf. Sci.78148CrossRefGoogle Scholar
  21. Kaler, E.W. 1988Small-angle scattering from colloidal dispersionsJ. Appl. Crystallogr.21729736CrossRefGoogle Scholar
  22. Kawahigashi, M., Fujitake, N., Azuma, J., Takahashi, T., Kajiwara, K., Urakawa, H. 1995The shape of humic-acid in solution as observed by small-angle x-ray-scatteringSoil Sci. Plant Nutr.41363366Google Scholar
  23. Leenheer, J.A., Rostad, C.E., Gates, P.M., Furlong, E.T., Ferrer, I. 2001Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometryAnal. Chem.7314611471CrossRefPubMedGoogle Scholar
  24. Mandelbrodt, B.B. 1982The Fractal Geometry of NatureW.H. FreemanNew YorkGoogle Scholar
  25. Martin, J.E., Hurd, A.J. 1987Scattering from fractalsJ. Appl. Crystallogr.206178CrossRefGoogle Scholar
  26. Meakin, P. 1991Fractal aggregates in geophysicsRev. Geophys.29317354Google Scholar
  27. Myneni, S.C.B., Brown, J.T., Martinez, G.A., Meyer-Ilse, W. 1999Imaging of humic substance macromolecular structures in water and soilsScience28613351337CrossRefPubMedGoogle Scholar
  28. NIST Center for Neutron Research, 2002. SANS Data Reduction and Imaging SoftwareGoogle Scholar
  29. Österberg, R., Mortensen, K. 1992Fractal dimension of humic acids. A small angle neutron scattering studyEur. Biophys. J.21163167Google Scholar
  30. Österberg, R., Mortensen, K. 1994The growth of fractal humic acids: cluster correlation and gel formationRadiat. Environ. Biophys.33269276CrossRefPubMedGoogle Scholar
  31. Österberg, R., Mortensen, K. 1995Direct observation of humic acid clusters, a nonequilibrium system with a fractal structureNaturwissenschaften82137139Google Scholar
  32. Plaschke, M., Romer, J., Kim, J.I. 2002Characterization of Gorleben groundwater colloids by atomic force microscopyEnviron. Sci. Technol.3644834488CrossRefPubMedGoogle Scholar
  33. Pranzas, P.K., Willumeit, R., Gehrke, R., Thieme, J., Knöchel, A. 2003Characterization of structure and aggregation processes of aquatic humic substances using small-angle scattering and X-ray microscopyAnal. Bioanal. Chem.376618625CrossRefPubMedGoogle Scholar
  34. Rice, J.A., Tombacz, E., Malekani, K. 1999Applications of light and X-ray scattering to characterize the fractal properties of soil organic matterGeoderma88251264CrossRefGoogle Scholar
  35. Ritchie, J.D., Perdue, E.M. 2003Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matterGeochim. Cosmochim. Acta678596CrossRefGoogle Scholar
  36. Rizzi F.R., Stoll S., Sensi N. & J. Buffle, 2004. A transmission electron microscopy study of the fractal properties and aggregation processes of humic acids. Soil Sci. 169(11), 765–775Google Scholar
  37. Schmidt, P.W. 1991Small angle scattering studies of disordered, porous and fractal systemsJ. Appl. Crystallogr.24414435CrossRefGoogle Scholar
  38. Senesi, N. 1999Aggregation patterns and macromolecular morphology of humic substances: fractal approachSoil Sci.164841856CrossRefGoogle Scholar
  39. Senesi, N., Rizzi, F.R., Dellino, P., Acquafredda, P. 1996Fractal dimension of humic acids in aqueous suspension as a function of pH and timeJ. Soil. Sci. Soc. Am.6017731780Google Scholar
  40. Senesi, N., Rizzi, F.R., Dellino, P., Acquafredda, P. 1997Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH valuesColloid Surf. A1275768CrossRefGoogle Scholar
  41. Stevenson, F.J. 1994Humus Chemistry: Genesis, Composition, ReactionsWileyNew YorkGoogle Scholar
  42. Simpson, A.J. 2002Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopyMagn. Reson. Chem.40S72S82CrossRefGoogle Scholar
  43. Simpson, A.J., Kingery, W.L., Hayes, M.H.B., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Godejohann, M., Hofmann, M. 2002Molecular structures and associations of humic substances in the terrestrial environmentNaturwissenschaften898488CrossRefPubMedGoogle Scholar
  44. Stenson, A.C., Marshall, A.G., Cooper, W.T. 2003Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectraAnal. Chem.7512751284CrossRefPubMedGoogle Scholar
  45. Swift, R.S. 1999Macromolecular properties of soil humic substances: fact, fiction, and opinionSoil Sci.164790802CrossRefGoogle Scholar
  46. Tate, R.L. 1999Micelles, subunits, and the Mediterranean SunSoil Sci.164775776CrossRefGoogle Scholar
  47. Teixeira, J. 1998Small angle scattering by fractal systems J. Appl. Crystallogr.21781785CrossRefGoogle Scholar
  48. USGS, 1987. Humic Substances in The Suwannee River Georgia: Interactions, Properties, and Proposed Structures. Open-File Report 87-557Google Scholar
  49. Wandruszka, R. 1998The micellar model of humic acid: evidence from pyrene fluorescence measurementsSoil Sci.163921930CrossRefGoogle Scholar
  50. Wandruszka, R., Ragle, C., Engebretson, R. 1997The role of selected cations in the formation of pseudomicelles in aqueous humic acidTalanta44805809CrossRefGoogle Scholar
  51. Wershaw, R.L.J. 1986A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-systemsJ. Contam. Hydrol.129CrossRefGoogle Scholar
  52. Wershaw, R.L. 1993Model for humus in soils and sedimentsEnviron. Sci. Technol.27814CrossRefGoogle Scholar
  53. Wershaw, R.L. 1999Molecular aggregation of humic substancesSoil Sci.164803813CrossRefGoogle Scholar
  54. Wershaw, R.L., Burcar, P.J., Sutula, C.L., Wiginton, B.J. 1967Sodium humate solution studied with small-angle X-ray scatteringScience1571429Google Scholar
  55. Yates, L.M., Wandruska, R. 1999Effects of pH and metals on the surface tension of aqueous humic materialsJ. Soil Sci. Soc. Am.6316451649Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Mamadou S. Diallo
    • 1
    • 2
    Email author
  • Charles J. Glinka
    • 3
  • William A. GoddardIII
    • 1
  • James H. JohnsonJr.
    • 2
  1. 1.Materials and Process Simulation Center, Beckman Institute 139-74California Institute of TechnologyPasadenaUSA
  2. 2.Department of Civil EngineeringHoward UniversityWashington, DCUSA
  3. 3.Center for Neutron ResearchNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations