Journal of Nanoparticle Research

, Volume 8, Issue 1, pp 23–28

Synthesis and Characterization of Ag@TiO2 Core-shell Nanoparticles and TiO2 Nanobubbles

Article

Abstract

Ag@TiO2 core-shell structured particles of nano-size dimensions have been successfully prepared via a one-step way, which has proved quite effective in procuring stable colloids. Transmission electron microscopy (TEM) was employed to characterize the core size and the shell thickness, which typically were 20~40 nm and ~2 nm, respectively. X-ray diffraction (XRD) indicated the existence of silver. Optical absorption dependence on core size and synthetic temperature has been explored by UV–Vis absorption spectroscopy. Finally, the interesting titanium dioxide nanobubbles with silver core leached out by a unique means, were studied, which consequently proved the core-shell structure of the prepared nanoparticles, confirming the TEM observation.

Keywords

core-shell structure surface plasmon UV–Vis spectroscopy nanobubble titaninum dioxide silver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Aliev, M. Correa-Duarte, A. Mamedov, J.W. Ostrander, M. Giersig, L. Liz-Marzan and N. Kotov, Effect of silica coating on interparticle interactions and magnetic properties. Adv. Mater. 11 (1999) 1006-1010CrossRefGoogle Scholar
  2. A.P. Alvisators, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100 (1996) 13226-13239CrossRefGoogle Scholar
  3. M. Anina, J. Thomas, N. Singh, A.S. Nair, R.T. Tom, T. Pradeep and R. Philip, Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: and investigation in the nanosecond domain. Chem. Phys. Lett. 380 (2003) 223-229CrossRefGoogle Scholar
  4. C.F. Bohen and D.R. Huffman, Absorption and Scattering of Light by Small Particles. New York: Wiley (1983).Google Scholar
  5. V.L. Colvin, M.C. Schlamp and A.P. Alivisators, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370 (1994) 354-357CrossRefGoogle Scholar
  6. S.S. Davis, Biomedical application of nanotechnology – Implications for drug targeting and gene therapy. Trends Biotechnol. 15 (1997) 217-224CrossRefGoogle Scholar
  7. M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts. Chem. Res. 34 (2001) 257-264CrossRefGoogle Scholar
  8. H.H. Huang, F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh and S.H. Tang, Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13 (1997) 172-175CrossRefGoogle Scholar
  9. T. Itakuta and K. Torigoe, Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11 (1995) 4129-4134CrossRefGoogle Scholar
  10. T. Li, M. Jooho, A.A. Morrone, J.J. Mecholsky, D.R. Talham and Adair J.H., Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique. Langmuir 15 (1999) 4328-4334CrossRefGoogle Scholar
  11. S. Link and M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillation in gold and silver nanodots and nanorods. J. Phys. Chem. B 103 (1999) 8410-8426CrossRefGoogle Scholar
  12. L.M. Liz-Marzan, D.S. Koktysh, A.A. Mamedov, M. Giersig and P. KotovN.A. Santas, One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16 (2000) 2731-2735CrossRefGoogle Scholar
  13. L.M. Liz-Maran and I. Lado-Tourino, Reduction and Stabilization of silver nanoparticle in ethanol by nonionic surfactants. Langmuir 12 (1996) 3585-3589CrossRefGoogle Scholar
  14. L.M. Liz-Maran and N.A. Kotov, Biomaterials by design: Layer-by-Layer assembled ion-selective and biocompatible films of TiO2 nonoshells for neurochemical monitoring. Adv.Funct.Mater. 12 (2002) 255-265CrossRefGoogle Scholar
  15. A.S. Nair, R.T. Tom, V. Suryanarayanan and T. Pradeep, ZrO2 bubbles from core-shell nanoparticles. J. Mater.Chem. 13 (2003) 297-300CrossRefGoogle Scholar
  16. I. Pastoriza-Santos and L.M. Liz-Marzan, Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15 (1999) 948-951CrossRefGoogle Scholar
  17. R. Philip, R.R. Kumar, N. Sandhyarani and T. Pradeep, Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. phys. Rev. B 62 (2000) 13160-13166CrossRefGoogle Scholar
  18. U. Thearith, M.L. Luis and P. Mulvaney, Redox catalysis using Ag@SiO2 colloids. J. Phys. Chem. B. 103 (1999) 6770-6773CrossRefGoogle Scholar
  19. R.T. Tom, A. Nair, N. Singh, M. Aslam, C.L. Nagendra, R. Philip, K. Vijayamohanan and T. Pradeep, Freely dispersible Au@TiO2, Au@Zro2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19 (2003) 3439-3445CrossRefGoogle Scholar
  20. Zhang L.M., D.X. Xia & Q. Shen, Mater. Lett. 2004, in review.Google Scholar
  21. C.J. Zhong and M. Maye, Core-shell assembled nanoparticles as catalysts. Adv. Mater. 13 (2001) 1507-1511CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.State Key Lab of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyHubeiP.R. China

Personalised recommendations