Journal of Nanoparticle Research

, Volume 7, Issue 4–5, pp 449–467 | Cite as

Synthesis of Nanoscale Bimetallic Particles in Polyelectrolyte Membrane Matrix for Reductive Transformation of Halogenated Organic Compounds



Nanosized Fe/Ni and Fe/Pd particles were synthesized in the polyacrylic acid (PAA)/polyether sulfone (PES) composite membrane matrix for reductive transformation of halogenated organic compounds (HOCs). The advantages of using membrane to immobilize nanoparticles are the reduction of particles loss, prevention of particles agglomeration, and potential application of convective flow. Cross-linked PAA/PES composite membranes containing metal ions as particles precursor were prepared by heat treatment with ethylene glycol (EG) as a cross-linking agent. Nanoscale metal particles were formed and immobilized inside the membrane matrix after reduction with sodium borohydride. Membrane morphology and structure were observed by scanning electron microscopy (SEM). Particle size and distribution were characterized by SEM and transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) was used to obtain the qualitative and quantitative element information of particles. A specimen-drift-free EDS line profile and EDS mapping system was performed in a scanning transmission electron microscopy (STEM) to determine the two-dimensional element distribution of iron and nickel in the nano domain. In the dechlorination study with trichloroethylene (TCE) as a representative HOCs, rapid and complete destruction of TCE was achieved by using nanosized bimetallic Fe/Ni or Fe/Pd in PAA/PES composite membranes. Typically more than 95% of 10 mg/l TCE was reduced within 1 h. Ethane was found in the headspace as the main product.


polyacrylic acid membrane nanoparticle halogenated organic compounds trichloroethylene dechlorination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, J.D.,III, Finke, R.G. 1999A review of modern transition-metal nanoclusters: Their synthesis characterization, and applications in catalysisJ. Mol. Catal. A: Chem.145144CrossRefGoogle Scholar
  2. Akamatsu, K., Deki, S. 1997Nanoscale metal particles dispersed in polymer matrixNanoStruct. Mater.811211129CrossRefGoogle Scholar
  3. Arnold, W.A., Roberts, A.L. 1998Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0)Environ. Sci. Technol.3230173025CrossRefGoogle Scholar
  4. Arnold, W.A., Ball, W.P., Roberts, A.L. 1999Polychlorinated ethane reaction with zero-valent zinc: Pathways and rate controlJ. Contam. Hydrol.40183200CrossRefGoogle Scholar
  5. Bhattacharyya, D., Hestekin, J.A., Brushaber, P., Cullen, L., Bachas, L.G., Sikdar, S.K. 1998Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacityJ. Membr. Sci.141121135CrossRefGoogle Scholar
  6. Boronina, T.N., Lagadic, I., Sergeev, G.B., Klabunde, K.J. 1998Activated and nonactivated forms of zinc powder: Reactivity towards chlorocarbons in water and AFM studies of surface morphologiesEnviron. Sci. Technol.3226142622CrossRefGoogle Scholar
  7. Burrow, P.D., Aflatooni, K., Gallup, G.A. 2000Dechlorination rate constants on iron and the correlation with electron attachment energiesEnviron. Sci. Technol.3433683371CrossRefGoogle Scholar
  8. Chen, X., Wang, S., Zhuang, J., Qiao, M., Fan, K., He, H. 2004Mesoporous silica-supported NiB amorphous alloy catalysts for selective hydrogenation of 2-ethylanthraquinoneJ. Catal.227419427CrossRefGoogle Scholar
  9. Chen, Y.W., Hsieh, T.Y. 2002Effects of inert particles on liquid phase hydrogenation over nano-sized catalystsJ. Nanopart. Res.4455461CrossRefGoogle Scholar
  10. Choe, S., Lee, S.H., Chang, Y.Y., Hwang, K.Y., Khim, J. 2001Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0Chemosphere42367372CrossRefPubMedGoogle Scholar
  11. Choi, H.S., Hino, T., Shibata, M., Negishi, Y., Ohya, H. 1992The characteristics of a PAA-PSF composite membrane for separation of water ethanol mixtures through pervaporationJ. Membr. Sci.72259266CrossRefGoogle Scholar
  12. Ciebien, J.F., Cohen, R.E., Duran, A. 1999Membrane catalysts for partial hydrogenation of 1,3-butadiene: Catalytic properties of palladium nanoclusters synthesized within diblock copolymer filmsMater. Sci. Eng. C74550CrossRefGoogle Scholar
  13. Corbierre, M.K., Cameron, N.S., Lennox, R.B. 2004Polymer-stabilized gold nanoparticles with high grafting densitiesLangmuir2028672873CrossRefPubMedGoogle Scholar
  14. Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J. 2004Recent advances in the liquid-phase syntheses of inorganic nanoparticlesChem. Rev.10438933946CrossRefPubMedGoogle Scholar
  15. Delaunois, F., Petitjean, J.P., Lienard, P., Jacob-Duliere, M. 2001Autocatalytic electroless nickel-boron plating on light alloysATB Metall.411013Google Scholar
  16. Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C. 1995Chemistry of borohydride reduction of iron (II) and iron (III) Ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB and Fe2 B powdersInorg. Chem.342835CrossRefGoogle Scholar
  17. Gonsalves, K.E., Li, H., Perez, R., Santiago, P., Jose-Yacaman, M. 2000Synthesis of nanostructured metals and metal alloys from organometallicsCoord. Chem. Rev.206–207607630CrossRefGoogle Scholar
  18. Gotpagar, J., Grulke, E., Tsang, T., Bhattacharyya, D. 1997Reductive dehalogenation of trichloroethylene using zero-valent ironEnviron. Prog.16137143Google Scholar
  19. Gotpagar, J.K., Grulke, E.A., Bhattacharyya, D. 1998Reductive dehalogenation of trichloroethylene: Kinetic models and experimental verificationJ. Hazard. Mater.62243264CrossRefGoogle Scholar
  20. Gotpagar, J., Lyuksyutov, S., Cohn, R., Grulke, E., Bhattacharyya, D. 1999Reductive dehalogenation of trichloroethylene with zero-valent iron: Surface profiling microscopy and rate enhancement studiesLangmuir1584128420CrossRefGoogle Scholar
  21. Helland, B.R., Alvarez, P.J.J., Schnoor, J.L. 1995Reductive dechlorination of carbon tetrachloride with elemental ironJ. Hazard. Mater.41205216CrossRefGoogle Scholar
  22. Hestekin, J.A., Bachas, L.G., Bhattacharyya, D. 2001Poly (amino acid) – functionalized cellulosic membranes: Metal sorption mechanisms and resultsInd. Eng. Chem. Res.4026682678CrossRefGoogle Scholar
  23. Hierso, J.C., Feurer, R., Poujardieu, J., Kihn, Y., Kalck, P. 1998Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticlesJ. Mol. Catal. A: Chem.135321325CrossRefGoogle Scholar
  24. Huang, J., Guo, Q., Ohya, H., Fang, J. 1998The characteristics of crosslinked PAA composite membrane for separation of aqueous organic solutions by reverse osmosisJ. Membr. Sci.144111CrossRefGoogle Scholar
  25. Johnson, T.L., Scherer, M.M., Tratnyek, P.G. 1996Kinetics of halogenated organic compound degradation by iron metalEnviron. Sci. Technol.3226342640CrossRefGoogle Scholar
  26. Kim, Y.H., Carraway, E.R. 2003aReductive dechlorination of TCE by zero valent bimetalsEnviron. Tech.246975Google Scholar
  27. Kim, Y.H., Carraway, E.R. 2003bDechlorination of chlorinated ethenes and acetylenes by palladized ironEnviron. Tech.24809819Google Scholar
  28. Konishi, S., Saito, K., Furusaki, S., Sugo, T. 1996Binary metal–ion sorption during permeation through chelating porous membranesJ. Membr. Sci.11116CrossRefGoogle Scholar
  29. Legrand, J., Taleb, A., Gota, S., Guittet, M.J., Petit, C. 2002Synthesis and XPS characterization of nickel boride nanoparticlesLangmuir1841314137CrossRefGoogle Scholar
  30. Lien, H.L., Zhang, W.X. 2001Nanoscale iron particles for complete reduction of chlorinated ethenesColl. Sur. A19197105CrossRefGoogle Scholar
  31. Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., Lowry, G.V. 2005TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different propertiesEnviron. Sci. Technol.3913381345CrossRefPubMedGoogle Scholar
  32. Matheson, L.J., Tratnyek, P.G. 1994Reductive dehalogenation of chlorinated methanes by iron metalEnviron. Sci. Technol.2820452053Google Scholar
  33. Mayer, A.B.R., Mark, J.E. 1997Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systemsColl. Polym. Sci.275333340CrossRefGoogle Scholar
  34. Meyer, D.E., Wood, K., Bachas, L.G., Bhattacharyya, D. 2004Degradation of chlorinated organics by membrane-immobilized nanosized metalsEnviron. Prog.23232242CrossRefGoogle Scholar
  35. Ohya, H., Shibata, M., Negishi, Y., Guo, Q.H., Choi, H.S. 1994The effect of molecular weight cut-off of PAN ultrafiltration support layer on separation of water–ethanol mixtures through pervaporation with PAA-PAN composite membraneJ. Membr. Sci.9091100CrossRefGoogle Scholar
  36. Orth, W.S., Gillham, R.W. 1996Dechlorination of trichloroethene in aqueous solution using Fe0Environ. Sci. Technol.306671CrossRefGoogle Scholar
  37. Papp, S., Szel, J., Oszko, A., Dekany, I. 2004Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicatesChem. Mater.1616741685CrossRefGoogle Scholar
  38. Philippot, K., Chaudret, B. 2003Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticlesC. R. Chimie610191034Google Scholar
  39. Rhim, J.W., Sohn, M.Y., Joo, H.J., Lee, K.H. 1993Pervaporation separation of binary organic-aqueous liquid mixtures using crosslinked PVA membrane. I. Characterization of the reaction between PVA and PAAJ. Appl. Polym. Sci.50679684CrossRefGoogle Scholar
  40. Rhim, J.W., Kim, H.K., Lee, K.H. 1996Pervaporation separation of binary organic-aqueous liquid mixtures using crosslinked poly (vinyl alcohol) membranes. IV. Methanol–water mixturesJ. Appl. Polym. Sci.6117671771CrossRefGoogle Scholar
  41. Ritchie, S.M.C., Bachas, L.G., Olin, T., Sikdar, S.K., Bhattacharyya, D. 1999Surface modification of silica-and cellulose-based microfiltration membranes with functional polyamino acids for heavy metal sorptionLangmuir1563466357CrossRefGoogle Scholar
  42. Ritchie, S.M.C., Kissick, K.E., Bachas, L.G., Sikdar, S.K., Parikh, C., Bhattacharyya, D. 2001Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal captureEnviron. Sci. Technol.3532523258CrossRefPubMedGoogle Scholar
  43. Rivas, B.L., Pereira, E.D., Moreno-Villoslada, I. 2003Water-soluble polymer-metal ion interactionsProg. Polym. Sci.28173208CrossRefGoogle Scholar
  44. Schäfer, D., Köber, R., Dahmke, A. 2003Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulationJ. Contam. Hydrol.65183202CrossRefPubMedGoogle Scholar
  45. Scherer, M.M., Balko, B.A., Gallagher, D.A., Tratnyek, P.G. 1998Correlation analysis of rate constants for dechlorination by zero-valent ironEnviron. Sci. Technol.3230263033CrossRefGoogle Scholar
  46. Schrick, B., Blough, A.D., Jones, J.L., Mallouk, T.E. 2002Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticlesChem. Mater.1451405147CrossRefGoogle Scholar
  47. Shen, J., Li, Z., Yan, Q., Chen, Y. 1993Reactions of bivalent metal ions with borohydride in aqueous soluiton for the preparation of ultrafine amorphous alloy particlesJ. Phys. Chem.9785048511CrossRefGoogle Scholar
  48. Shimotori, T., Nuxoll, E.E., Cussler, E.L., Arnold, W.A. 2004A polymer membrane containing Fe0 as a contaminant barrierEnviron. Sci. Technol.3822642270CrossRefPubMedGoogle Scholar
  49. Su, C., Puls, R.W. 1999Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate productsEnviron. Sci. Technol.33163168CrossRefGoogle Scholar
  50. Tamara, M.L., Butler, E.C. 2004Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metalEnviron. Sci. Technol.3818661876CrossRefPubMedGoogle Scholar
  51. Tannenbaum, R. 1998Metal cluster growth limited by polymer surface interactionsCurr. Tren. Polym. Sci.38198Google Scholar
  52. Tarr M.A., 2003. Chemical Degradation Methods for Wastes and Pollutants, Chapter 9. Marcel Dekker Inc., pp. 371–421Google Scholar
  53. Teranishi, T., Miyake, M. 1999Novel synthesis of monodispersed Pd/Ni nanoparticlesChem. Mater.1134143416CrossRefGoogle Scholar
  54. Tsutsumi, K., Funaki, Y., Hirokawa, Y., Hashimoto, T. 1999Selective incorporation of palladium nanoparticles into microphase-separated domains of poly (2-vinylpyridine)-block-polyisopreneLangmuir1552005203CrossRefGoogle Scholar
  55. Wang, C.B., Zhang, W.X. 1997Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBsEnviron. Sci. Technol.3121542156CrossRefGoogle Scholar
  56. Williams D.B. & C.B. Carter, 1996. Transmission Electron Microscopy, Volume (4): Spectrometry. Kluwer Academic PubGoogle Scholar
  57. Xu, Y.F., Huang, R.Y.M. 1988Pervaporation separation of ethanol-water mixtures using ionically crosslinked blended polyacrylic acid (PAA)-Nilon-6 membranesJ. Appl. Polym. Sci.361121CrossRefGoogle Scholar
  58. Xu, Y., Zhang, W.X. 2000Subcolloidal Fe/Ag Particles for reductive dehalogenation of chlorinated benzenesInd. Eng. Chem. Res.3922382244CrossRefGoogle Scholar
  59. Zhang, W.X., Wang, C.B., Lien, H.L. 1998Treatment of chlorinated organic contaminants with nanoscale bimetallic particlesCatal. Today40387395CrossRefGoogle Scholar
  60. Zhang, W.X. 2003Nanoscale iron particles for environmental remediation: An overviewJ. Nanopart. Res.5323332CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations