Journal of Nanoparticle Research

, Volume 7, Issue 4–5, pp 469–476 | Cite as

Preparation of Cellulose Acetate Supported Zero-Valent Iron Nanoparticles for the Dechlorination of Trichloroethylene in Water

Article

Abstract

Chlorinated hydrocarbons are an immense concern for human health and the environment because they␣are highly toxic and are present in many contaminated sites. Zero-valent iron has been shown to be very effective for the dechlorination of chlorinated olefins and paraffins. This behavior is enhanced when the particle size is in the nanometer range. The activity of these nanoparticles is very high, and thus supporting the particles is important to preserve their chemical nature by inhibiting oxidation until they can be contacted with the chlorinated stream. In this paper, we present the preparation of membrane (cellulose acetate) supported zero-valent iron nanoparticles. The highly active nanoparticles were synthesized in a water-oil micro-emulsion, mixed with cellulose acetate-acetone solution, and then formed into a porous membrane by phase inversion. The unsupported iron particles and membrane supported iron particles were characterized using transmission electron microscopy. Batch experiments were conducted to characterize the activity of the supported zero-valent iron nanoparticles to dechlorinate trichloroethylene in water, as well as to investigate synergistic effects of the polymer support matrix.

Keywords

dechlorination membrane sorption and reaction trichloroethylene zero-valent iron colloids 

Abbreviations

AA

Atomic absorption spectroscopy

CA

Cellulose acetate

CTAB

Cetyltrimethylammo- nium bromide

FID

Flame ionization detector

GPC

Gel permeation chromatography

TCE

Trichloroethylene

TEM

Transmission electron microscopy

XRD

X-ray diffraction

w/o

Water in oil

ZVI

Zero-valent iron.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burris, D.R., Campbell, T.J., Manoranjan, V.S. 1995Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water systemEnviron. Sci. Technol.2928502855CrossRefGoogle Scholar
  2. Carpenter, E.E. 2001Iron nanoparticles as potential magnetic carriersJ. Magn. Magn. Mater.2251720CrossRefGoogle Scholar
  3. Dixit, S.G., Mahadeshwar, A.R., Haram, S.K. 1998Some aspects of the role of surfactants in the formation of nanoparticlesColl. Surf. A1336975CrossRefGoogle Scholar
  4. Geiger, C.L., Ruiz, N.E., Clausen, C.A., Reinhart, D.R., Quinn,  J.W. 2002Ultrasound pretreatment of elemental iron: kinetic studies of dehalogenation reaction enhancement and surface effectsWater Res.3613421350CrossRefPubMedGoogle Scholar
  5. Gilbert, K.M., Whitlow, A.B., Pumford, N.R. 2004Environmental contaminant and disinfection by-product trichloroacetaldehyde stimulatesT. cells in viro Int. Immunopharmacol.42536CrossRefGoogle Scholar
  6. Giri, S., Ganguli, S., Bhattacharya, M. 2001Surface oxidation of iron nanoparticlesAppl. Surf. Sci.182345349CrossRefGoogle Scholar
  7. Gotpagar, J.K., Grulke, E.A., Tsang, T., Bhattacharyya, D. 1997Reductive dehalogenation of trichloroethylene using zero-valent ironEnviron. Progr.6137143Google Scholar
  8. Helland, B.R., Alvarez, P.J.J., Schnoor, J.L. 1995Reductive dechlorination of carbon tetrachloride with element ironJ. Haz. Mater.41205216CrossRefGoogle Scholar
  9. Johnson, T.L., Fish, W., Gorby, Y.A., Tratnyek, P.G. 1998Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surfaceJ. Contam. Hydro.29379398CrossRefGoogle Scholar
  10. Li, F., Vipulanandan, C., Mohanty, K.K. 2003Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethyleneColl. Surf. A223103112CrossRefGoogle Scholar
  11. Martino, A., Stoker, M., Hicks, M., Bartholomew, C.H., Sault, A.G., Kawola, J.S. 1997The synthesis and characterization of iron colloid catalysts in inverse micelle solutionsAppl. Cat. A161235248CrossRefGoogle Scholar
  12. Orth, W.S., Gillham, R.W. 1996Dechlorination of trichloroethene in aqueous solution using Fe0Environ. Sci. Technol.306671CrossRefGoogle Scholar
  13. Pileni, M.P., Lisiecki, I. 1993Nanometer metallic copper particle synthesis in reverse micellesColl. Surf. A806368CrossRefGoogle Scholar
  14. Ponder, S.M., Ford, J.R., Darab, J.G., Mallouk, T.E. 1999Ferragels: A new family of materials for remediation of aqueous metal ion solutionMat. Res. Soc. Symp. Proc.55612691276Google Scholar
  15. Ponder, S.M., Darab, J.G., Mallouk, T.E. 2000Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent ironEnviron. Sci. Technol.3425642569CrossRefGoogle Scholar
  16. Reif, J.S., Burch, J.B., Nuckols, J.R., Metzger, L., Ellington, D., Anger, W.K. 2003Neurobehavioral effects of exposure to trichloroethylene through a municipal water supplyEnviron. Res.93248258CrossRefPubMedGoogle Scholar
  17. Schrick, B., Blough, J.L., Jones, A.D., Mallouk, T.E. 2002Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticlesChem. Mater.1451405147CrossRefGoogle Scholar
  18. Wang, C.-B., Zhang, W.-X. 1997Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBsEnviron. Sci. Technol.3121542156CrossRefGoogle Scholar
  19. Zhang, W.-X., Wang, C.-B., Lien, H.-L. 1998Treatment of chlorinated organic contaminants with nanoscale bimetallic particlesCatal. Today40387395CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Chemical and Biological Engineering DepartmentUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of Metallurgical and Materials EngineeringUniversity of AlabamaTuscaloosaUSA

Personalised recommendations