Journal of Nanoparticle Research

, Volume 7, Issue 2–3, pp 275–285

Influence of silicon and carbon excesses on the aqueous dispersion of SiC nanocrystals for optical application

Technology and applications

Abstract

The dispersion behaviour of laser-synthesized silicon carbide nanoparticles (npSiC) in water is investigated by photon correlation spectroscopy (PCS). With regard to previous studies and due to an application in the processing of optical materials, this paper concerns low npSiC contents (from 0.05 to 10 wt.%). The role played by the particle surface state is be pointed out through the consideration of stochiometric (C/Si = 1), carbon-rich (C/Si > 1) and silicon-rich (C/Si < 1) nanopowders. Suspensions made from stoichiometric and silicon-rich nanopowders are easily dispersed and stable with time. The PCS measurements reveal in this case more than 95% of isolated nanoparticles, pointing out the key role of the oxidized layer covering the grain of silicon-rich samples. At the opposite, the carbon-rich powders are hardly dispersed in pure water, correlated with the presence of a relatively inert graphitic carbon layer at the grain surface. However, by addition of a commercial polymeric dispersant, all nanopowders induce high quality suspensions. In particular, the carbon-rich samples are easily dispersed, and possible dispersion mechanisms of npSiC in presence of a polymeric surfactant are discussed. The influence of the npSiC loading and the time evolution of the suspension are also presented. By considering stoichiometric, as well as carbon- and silicon-rich samples, this paper demonstrates the possibility to achieve high quality dispersions of SiC nanoparticles, whatever the chemical composition of the powder, as an easy step for optical material processing.

Keywords

SiC nanocrystals aqueous dispersion photon correlation spectroscopy (PCS) carbon- and silicon-rich surface laser pyrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohren C.F. & D.R. Huffman, 1983. In Absorption and Scattering of Light from Small Particles. Wiley interscienceGoogle Scholar
  2. Bouclé, J., Kassiba, A., Emery, J., Kityk, I.V., Makowska-Janusik, M., Sanetra, J., Herlin-Boime, N., Mayne, M. 2002Local electrooptic effect of the SiC large-sized nanocrystallites incorporated in polymer matricesPhys. Lett. A302196202CrossRefGoogle Scholar
  3. Bouclé, J., Kassiba, A., Kityk, I.V., Herlin-Boime, N., Sanetra, J., Makowska-Janusik, M., Reynaud, C. 2003Linear electro-optical effects in the hybrid matrices polymer/SiC nanocrystalsSolid State Phenom.94115Google Scholar
  4. Cannon, W.R., Danforth, S.C., Haggerty, J.S., Marra, R.A. 1982Sinterable ceramic powders from laser-driven reactions: process description and modellingJ. Am. Ceram. Soc.65330Google Scholar
  5. Cauchetier, M., Croix, O., Luce, M. 1988Laser synthesis of silicon carbide powders from silane and hydrocarbon mixturesAdv. Ceram. Mater.3548552Google Scholar
  6. Ćerović, Lj.S., Milonjić, S.K., Bahloul-Hourlier, Dj., Kićević, D.M. 2000Dispersion stability of SiC, SiCN and Si3N4 ultrafine powders in aqueous and nonaqueous mediaMater. Sci. Forum35297Google Scholar
  7. Charpentier, S., Kassiba, A., Bulou, A., Monthioux, M., Cauchetier, M. 1999aEffects of excess carbon and vibrational properties in ultrafine SiC powdersEur. Phy. J. Appl. Phys.8111CrossRefGoogle Scholar
  8. Charpentier, S., Kassiba, A., Emery, J., Cauchetier, M. 1999bInvestigation of the paramagnetic centres and electronic properties of silicon carbide nanomaterialsJ. Phys. Condens. Mater.114887CrossRefGoogle Scholar
  9. Herlin-Boime, N., Vicens, J., Dufour, C., Ténégal, F., Reynaud, C., Rizk, R. 2004Flame temperature effect on the structure of SiC nanoparticles grown by laser pyrolysisJ. Nanopart. Res.663CrossRefGoogle Scholar
  10. Huang, Q., Chen, P., Gu, M., Jin, Y., Sun, K. 2002aEffect of surface modification on the rheological behavior of concentrated, aqueous SiC suspensionsMater. Lett.56546Google Scholar
  11. Huang, Q., Gu, M., Sun, K., Jin, Y. 2002bEffect of pretreatment on rheological properties of silicon carbide aqueous suspensionsCeram. Int.28 747CrossRefGoogle Scholar
  12. Kassiba, A., Makowska-Janusik, M., Bouclé, J., Bardeau, J.F., Bulou, A., Herlin-Boime, N., Mayne, M., Armand, X. 2002aStoichiometry and interface effects on the electronic and optical properties of SiC nanoparticlesDiamond Relat. Mater.111243CrossRefGoogle Scholar
  13. Kassiba, A., Makowska-Janusik, M., Bouclé, J., Bardeau, J.F., Bulou, A., Herlin-Boime, N. 2002bPhotoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: experimental and numerical simulationsPhys. Rev. B66155317CrossRefGoogle Scholar
  14. Kityk, I.V., Makowska-Janusik, M., Kassiba, A., Plucinski, K.J. 2000SiC nanocrystals embedded in oligoetheracrylate photopolymer matrices; new promising nonlinear optical materialsOpt. Mater.13449CrossRefGoogle Scholar
  15. Konorov, S.O., Fedotov, A.B., Ivanov, A.A., Alfimov, M.V., Zabotnov, S.V., Naumov, A.N., Sidorov-Biryukov, D.A., Podshivalov, A.A., Petrov, A.N., Fornarini, L., Carpenese, M., Ferrante, G., Fantoni, R., Zheltikov, A.M. 2003Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown thresholdOpt. Commun.224309CrossRefGoogle Scholar
  16. Konorov, S.O., Ivanov, A.A., Alfimov, M.V., Fornarini, L., Carpanese,  M., Avella, M., Errico, M.E., Petrov, A.N., Fantoni, R., Zheltikov, A.M. 2004Polarization properties of optical harmonics generated by femtosecond Cr:forsterite laser pulses in SiC nanopowder filmsJ. Opt. A: Pure Appl. Opt.6253CrossRefGoogle Scholar
  17. Lewis, J.A. 2000Colloidal processing of ceramicsJ. Am. Ceram. Soc.832341Google Scholar
  18. Li, W, Chen, M, Gu, M, Jin, Y 2004Effect of TMAH on rheological behavior of SiC aqueous suspensionJ. Eur. Ceram. Soc.2436793684CrossRefGoogle Scholar
  19. Liu, D.-M., Fu, C.-T. 1996Effect of rheological behavior on properties of cast and sintered silicon carbideCeram. Int.22101CrossRefGoogle Scholar
  20. Mizuta, S., Cannon, W.R., Bleir, A., Haggerty, J.S. 1982Ceram. Bull.61872Google Scholar
  21. Ocaňa, M., Fornés, V., Serna, C.J. 1989The variability of the infrared powder spectrum of amorphous SiO2J. Noncrystal. Solids107187CrossRefGoogle Scholar
  22. Rahaman, M.N., Boiteux, Y., Johghe, L.C. 1986Characterization of silicon nitride and silicon carbide powdersAm. Ceram. Soc. Bull.65171Google Scholar
  23. Ramachandra Rao, R., Roopa, H.N., Kannan, T.S. 1999Effect of pH on the dispersability of silicon carbide powders in aqueous mediaCeram. Int.25223CrossRefGoogle Scholar
  24. Ramis, G., Quintard, P., Cauchetier, M., Busca, G., Lorenzelli,  V. 1989Effects of thermal and laser annealing on silicon carbide nanopowder produced in radio frequency glow dischargeJ. Am. Ceram. Soc.721692CrossRefGoogle Scholar
  25. Shaffer, P.T.B., Naum, R.G. 1969J. Opt. Soc. Am.591498Google Scholar
  26. Sias, U.S., Moreira, E.C., Ribeiro, E., Boudinov, H., Amaral, L., Behar, M. 2004Photoluminescence from Si nanocrystals induced by high-temperature implantation in SiO2J. Appl. Phys.955053CrossRefGoogle Scholar
  27. Sigmund, M., Bell, N.S., Bergström, L. 2000Novel powder-processing methods for advanced ceramicsJ. Am. Ceram. Soc.831557Google Scholar
  28. Sun, J., Gao, L. 2001Dispersing SiC powder and improving its rheological behaviourJ. Eur. Ceram. Soc.212447CrossRefGoogle Scholar
  29. Terayama, H., Okumura, K., Sakai, K., Torigoe, K., Esumi, K. 2001Aqueous dispersion behavior of drug particles by addition of surfactant and polymerColl. Surf. B: Biointerf.2073CrossRefGoogle Scholar
  30. Tougne, P., Hommel, H., Legrand, A.P., Herlin, N., Luce, M., Cauchetier, M. 1993Evolution of the structure of ultrafine SiC-laser-formed powders with synthesis conditionsDiamond Relat. Mater.2486CrossRefGoogle Scholar
  31. Viera, G., Sharma, S.N., Costa, J., Zhang, R.Q., Andjar, J.L., Bertran, E. 1997Effects of thermal and laser annealing on silicon carbide nanopowder produced in radio frequency glow dischargeDiamond Relat. Mater.61559CrossRefGoogle Scholar
  32. Wakai, F., Kodoma, Y., Sakaguchi, S., Murayama, N., Izaki, K., Niihara, K. 1990Super-plasticity of non-oxide ceramics, superplasticity in metals, ceramics, and interceramicsNature196349Google Scholar
  33. Widegren, J., L., Bergström 2000The effect of acids and bases on the dispersion and stabilization of ceramic particles in ethanolJ. Eur. Ceram. Soc.20659CrossRefGoogle Scholar
  34. Yang, H., Yang, R., Wan, X., Wan, W. 2004Structure and photoluminescence of Ge nanoparticles with different sizes embedded in SiO2 glasses fabricated by a sol-gel methodJ. Cryst. Growth261549CrossRefGoogle Scholar
  35. Zhou, R., Jiang, Y., Liang, Y., Zheng, F., Chen, Y. 2002Dispersion behaviour of laser-synthesized nanometric SiC powders in aqueous medium with ammonium polyacrylateCeram. Int.28847CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Service des Photons, Atomes et Molécules, Laboratoire Francis Perrin (CEA/CNRS URA-2453)CEA SaclayCedexFrance
  2. 2.Laboratoire de Physique de l’Etat Condensé, CNRS UMR 6087Université du MaineCedex 9France

Personalised recommendations