Journal of Nanoparticle Research

, Volume 7, Issue 2–3, pp 111 –127 | Cite as

Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes

  • Rodolfo R. LlinásEmail author
  • Kerry D. Walton
  • Masayuki Nakao
  • Ian Hunter
  • Patrick A. Anquetil


Electrical recording from spinal cord vascular capillary bed has been achieved demonstrating that the intravascular space may be utilized as a means to address brain activity with out violating the brain parenchyma. While the initial demonstration was implemented using electrically insulated platinum electrodes in vitro, the possibility of using conducting polymer filaments is now being explored. This paper presents a set of highly possible future scenarios where the integration of electrophysiology and novel polymer technology may serve as a new approach towards basic and medical neuroscience.


brain research electrical recording neural stimulation biocompatibility nanowires conducting polymers nanobiomedicine nanobiotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anquetil P., 2004. Large contraction conducting polymer actuators. In: Ph.D. Thesis. BioInstrumentation Lab. Massachusetts Institute of Technology, BostonGoogle Scholar
  2. Azom, 2004. MaterialsGoogle Scholar
  3. Bayindir, M., Sorin, F., Abouraddy, A., Viens, J., Hart, S., Joannopoulos, J., Fink, Y. 2004Metal–insulator–semiconductor optoelectronic fibresNature431826829CrossRefPubMedGoogle Scholar
  4. Bianchi, C., Cecchetto, E., François, B. 1999Synthesis and Characterization of Poly(ethylene oxide) – block – poly(para-phenylene vinylene)Synth. Met.102916917CrossRefGoogle Scholar
  5. Bower, J., Llinas, R. 1982Simultaneous sampling and analysis of the activity of multiple, closely adjacent, cerebellar Purkinje cellsSoc. Neurosci. Abst.8830Google Scholar
  6. Chapin, J., Moxon, K. 2001Neural Prostheses for Restoration of Sensory and Motor FunctionCRC PressBoca RatonGoogle Scholar
  7. Cho, K., Lee, M., Park, C. 1997Environmental stress cracking of rubber-modified styrene polymers in freon vapourPolymer384641CrossRefGoogle Scholar
  8. Coury, A., Levy, R., Ratner, B., Schoen, F., Williams, D., Williams, R.,  et al. 2004Degradation of materials in the biological environmentRatner, B. eds. Biomaterials Science: An introduction to Materials in MedicineElsevier IncSan DiegoGoogle Scholar
  9. Cui, X., Wiler, J., Dzaman, M., Altschuler, R.A., Martin, D.C. 2003In vivo studies of polypyrrole/peptide coated neural probesBiomaterials24777787PubMedGoogle Scholar
  10. Dong, H., Nyame, V., Macdiarmid, A., Jones, W. 2004Polyaniline/poly(methyl methacrylate) coaxial fibers: The fabrication and effects of the solution properties on the morphology of electrospun core fibersJ. Polym. Sci. Part B – Polym. Phys.4239343942CrossRefGoogle Scholar
  11. Donoghue, J.P. 2002Connecting cortex to machines: Recent advances in brain interfacesNature Neurosci.510851088CrossRefPubMedGoogle Scholar
  12. Feugier, P., Black, R., Hunt, J., How, T. 2004Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stressBiomaterials2614571466CrossRefGoogle Scholar
  13. Fofonoff, T. 2003Brain Microelectrode Array SystemsMechanical EngineeringMassachusetts Institute of TechnologyBostonGoogle Scholar
  14. Fofonoff, T.A., Martel, S.M., Hatsopoulos, N.G., Donoghue, J.P., Hunter, I.W. 2004Microelectrode array fabrication by electrical discharge machining and chemical etchingIEEE Trans. Biomed. Eng.51890895CrossRefPubMedGoogle Scholar
  15. Fukuda M., Yamamoto T., Llinas R., (1989). The isochronic band hypothesis and the climbing fiber regulation of motricity. An experimental studyGoogle Scholar
  16. Fukuda, M., Yamamoto, T., Llinas, R. 2001The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental studyEur. J. Neurosci.13315326CrossRefPubMedGoogle Scholar
  17. Gagnon, D., Karasz, F., Thomas, E., Lenz, R. 1987Molecular orientation and conductivity in highly drawn poly(p-phenylene vinylene)Synth. Met.208595CrossRefGoogle Scholar
  18. Geddes, L. 1972Electrodes and the Measurements of Bioelectric EventsWiley-InterscienceNew YorkGoogle Scholar
  19. Granier, T., Thomas, E., Gagnon, D., Karasz, F., Lenz, R. 1986Structure investigation of poly(p-phenylene vinylene)J Polym. Sci: Part B: Polym. Phys.2427932804CrossRefGoogle Scholar
  20. Gudiksen, M., Lauhon, L., Wang, J., Smith, D., Lieber, C. 2002Growth of nanowire superlattice structures for nanoscale photonics and electronicsNature415617620CrossRefPubMedGoogle Scholar
  21. Guillory K. & B. Hatt B, 2002. Electrode Aarrays for Large-scale Neural Interfaces. Proceedings of the 2nd Joint EMBS/BMES Conf., Houston, TX, pp. 2060–2061Google Scholar
  22. Guterman-Tretter E., 2003. Electroactive polmers with enhanced biocompatibility for neural tissue engineering: Getting one step closer to intelligent nanostructured scaffolds. Massachusetts Institute of TechnologyGoogle Scholar
  23. Hansen, S., Ratner, B. 2004Evaluation of blood-materials interactionRatner, B. eds. Biomaterials Science: An Introduction to Materials in MedicineElsevier Inc.San DiegoGoogle Scholar
  24. Hata, K., Futaba, D., Minuzo, K., Namai, T., Yumura, M., Iijima, S. 2004Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubesScience30613621364CrossRefPubMedGoogle Scholar
  25. Hong J., 2004. Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials. 26Google Scholar
  26. Huang, Y., Duan, X., Cui, Y., Lauhon, L., Kim, K.-H., Lieber, C. 2001Logic gates and computation from assembled nanowire building blocksScience29413131317CrossRefPubMedGoogle Scholar
  27. Hughes, M., GZ, C., MSP, S., DJ, F., AH, W. 2004Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymersComposites Sci. Technol.6423252331CrossRefGoogle Scholar
  28. Ito, T., Shirakawa, H., Ikeda, S. 1974Simultaneous polymerization and formation of polyacetylene film on surface of concentrated solubel Ziegler-type catalyst solutionJ. Polym. Sci.121120Google Scholar
  29. Kaladhar, K., Sharma, C. 2004Supported cell mimetic monolayers and their interaction with bloodLangmuir201111511122CrossRefPubMedGoogle Scholar
  30. Kim, D., Abidian, M., Martin, D. 2004Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devicesJ. Biomed. Mater. Res.71577585CrossRefGoogle Scholar
  31. Kohn, J., Abramson, S., Langer, R. 2004Bioresorbalbe and bioerodible materialsRatner, B. eds. Biomaterials Science: An introduction to Materials in MedicineElsevier IncSan DiegoGoogle Scholar
  32. Kolchinsky, A. 2001Neurosurgical intervention for Parkinson’s disease: An updateSurg. Neurol.56277281CrossRefPubMedGoogle Scholar
  33. Lee, Y.-J. 1999X-ray Analysis of the Molecular Structure of PolypyrroleMassachusetts Institute of TechnologyCambridgeGoogle Scholar
  34. Llinás, R. 1991The noncontinuous nature of movement executionHumphrey, D.Freund, H. eds. Motor Control: Concepts and IssuesJohn Wiley & Sons LtdDahlem Konferenzen223242Google Scholar
  35. Llinás R. & V. Makarov, 2003. Visionary Projects: Brain–machine interface via a neurovascular approach. In: Roco M., Sims W. (ed.). Converging technologies for improving human performance. Nanotechnology, Biotechnology, Information Technology and Cognitive Science. Bainbridge, New York, pp. 2003Google Scholar
  36. Llinas, R., Sasaki, K. 1989The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordingsEur. J. Neurosci.1587602PubMedGoogle Scholar
  37. Martel S., N. Hatsopoulos, I. Hunter, J. Donoghue, J. Burgert, J. Maláek, C. Wiseman, & R. Dye, 2001. Development of a wireless brain implant: The Telemetric Electrode Array System (TEAS) project. Proceedings of the 23rd Int Conf of the IEEE Eng. in Med and Bio Soc, Istanbul Turkey, pp. 3594–3597Google Scholar
  38. Massia S., 2003. Homepage. Arizona State University School of EngineeringGoogle Scholar
  39. Massia, S., Stark, J. 2001Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachmentJ. Biomed. Mater. Res.56390399CrossRefPubMedGoogle Scholar
  40. Nakabayashi, N., Iwasaki, Y. 2004Copolymers of 2-methacryloyloxyethyl phophorylcholine (MPC) as biomaterialsBioomed. Mater. Eng.14345354Google Scholar
  41. Nguyen, S.T., Gin, D., Hupp, J., Zhang, X. 2001Supramolecular chemistry: Functional structures on the mesoscalePNAS, USA981184911850Google Scholar
  42. Nicolelis, M. 1999Methods for Neural Ensemble RecordingCRC PressBoca RatonGoogle Scholar
  43. Nunez, P. 1981Electrical Fields of the Brain: The Neurophysics of EEGOxford Universty PressNew York, OxfordGoogle Scholar
  44. Otto, M., Franzen, A., Hansen, T., Kilpatrick, C. 2004Modification of human platelet adhesion on biomaterial surfaces by protein preadsorption under static and flow conditionsJ Mater Sci: Mater Med.153542CrossRefGoogle Scholar
  45. Park, J., Bae, Y. 2002Hydrogels based on poly (ethylene oxide) and poly (tetramethylene oxide) or poly(dimethyl siloxane): Synthesis, characterization, in vitro protein adsorption and platelet adhesionBiomaterials.2317971808CrossRefPubMedGoogle Scholar
  46. Peppas N., 2004. Classes of materials used in medicine. 2.5 Hydrogels. In: Ratner B. et al., eds. Biomaterials Science: An Introduction to Materials in Medicine. San DiegoGoogle Scholar
  47. Rivers, T., Hudson, T., Schmidt, C. 2002Synthesis of novel, biodegradable electrically conducting polymer for biomedical applicationsAdv. Funct. Mater.123337CrossRefGoogle Scholar
  48. Sefton, M., Gemmell, C. 2004Nonthrombogencic treatments and strategiesRatner, B. eds. Biomaterials Science: An Introduction to Materials in Medicine.Elsevier Inc.San DiegoGoogle Scholar
  49. Sheina, J., Koawalewski, T., McCullough, R. 2002Tuning the Electrical Conductivity and Self-Assembly of Regioregular Polythiophene by Block Copolymerization: Nanowire Morphologies in New Di- and Triblock CopolymersAngew Chem. Int. Ed.41329332CrossRefGoogle Scholar
  50. Shen, M., Pan, Y., Wagner, M., Hauch, K., Castner, D., Ratner, B., Horbet, T. 2001Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasm deposited tetraethylene glycol dimethly etherJ. Biomater. Sci. Polym. Ed.12961978CrossRefPubMedGoogle Scholar
  51. Shirakawa, H., Louis, E., MacDiarmid, A., Chiang, C., Heeger, A. 1977Synthesis of electrically conducting organic polymers – halogen derivatives of polyacetyleneJ. Chem. Soc. – Chem. Commun.16578580CrossRefGoogle Scholar
  52. Sirringhaus, H., Brown, P., Friend, R., Nielsen, M., Bechgaard, K., Langeveld-Voss, B., Spierling, A., Janssen, R., Meijer, E.W., Herwing, P., Leeuw, D. 1999Two-dimensional charge transport in self-organized, high-mobility conjugated polymersNature401685689CrossRefGoogle Scholar
  53. Sugihara, I., Lang, E.J., Llinas, R. 1995Serotonin modulation of inferior olivary oscillations and synchronicity: A multiple-electrode study in the rat cerebellumEur. J. Neurosci.7521534PubMedGoogle Scholar
  54. Suk, J., Ribary, U., Cappell, J., Yamamoto, T., Llinas, R. 1991Anatomical localization revealed by MEG recordings of the human somatosensory systemElectroencephalogr. Clin. Neurophysiol.78185196CrossRefPubMedGoogle Scholar
  55. Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M., Ko, F. 2003Regeneration of Bombyx mori silk by electrospinning-part 1: Processing parameters and geometric propertiesPolymer4457215727CrossRefGoogle Scholar
  56. SurModics, 2004. The art and science of surface modification and drug deliveryGoogle Scholar
  57. Wang, Y., Robertson, J., Spillman, W., Claus, R. 2004Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibilityPharm Res.2113621373CrossRefPubMedGoogle Scholar
  58. Yamamoto, T., Fukuda, M., Llinas, R. 2001Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellumEur. J. Neurosci.13327339CrossRefPubMedGoogle Scholar
  59. Yamamoto, T., Williamson, S.J., Kaufman, L., Nicholson, C., Llinas, R. 1988Magnetic localization of neuronal activity in the human brainProceedings of the National Academy of Sciences of the United States of America.8587328736PubMedGoogle Scholar
  60. Zhang, M., Atkinson, K., Baughman, R. 2004Multifunctional carbon nanotube yarns by downsizing an ancient technologyScience30613581136CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rodolfo R. Llinás
    • 1
    Email author
  • Kerry D. Walton
    • 1
  • Masayuki Nakao
    • 2
  • Ian Hunter
    • 3
  • Patrick A. Anquetil
    • 3
  1. 1.Department of Physiology and NeuroscienceNYU School of MedicineNew YorkUSA
  2. 2.Institute of Engineering InnovationUniversity of TokyoJapan
  3. 3.Department of Mechanical Engineering, BioInstrumentation LaboratoryMassachusetts Institute of TechnologyUSA

Personalised recommendations